Three-dimensional, multicomponent and multiphase transport computations are performed using a computational fluid dynamics ͑CFD͒ code ͑FLUENT͒ with a polymer electrolyte membrane ͑PEM͒ fuel cell module, which has been further improved by taking into account the detailed composition and structure of the catalyst layers using a multiple thin-film agglomerate model. In this model, reactant concentrations are dependent on transport through liquid water ͑caused by flooding in the catalyst layer͒ and polymer electrolyte films which surround the catalyst sites. The results of CFD computations show that transport limitations associated with the liquid water and polymer electrolyte have substantial negative effects on PEM fuel cell performance.
SUMMARYImproving the performance of polymer-electrolyte membrane (PEM) fuel cells depends on the optimization of catalyst layer composition and structure for large active surfaces. Modelling studies provide a valuable tool for investigating the effects of catalyst layer composition and structure on the electrochemical and physical phenomena occurring in PEM fuel cells. Previous modelling studies have shown that the distribution of electrochemical reactions in catalyst layers is highly dependent on the complex interaction of activation and ohmic effects as well as contributions from transport limitations and variations in local and overall current densities. In this paper, three-dimensional, multicomponent and multiphase transport computations are performed using a computational fluid dynamics (CFD) code (FLUENT TM ) with a new PEM fuel cell module, which has been further improved by taking into account the detailed composition and structure of the catalyst layers using the multiple thin-film agglomerate model. The detailed modelling of reactions in the catalyst layers is used to determine methods of improving the effectiveness of catalyst layers for a given platinum loading. First, available data on catalyst layer composition and structure are used in CFD computations to predict reaction rate distributions. Based on these results, spatial variations in catalyst loading are then implemented in CFD computations for the same overall catalyst loading to investigate possible performance gains. It is found that grading catalyst loading towards the membrane in the anode and the gas channel inlet in the cathode provides the most beneficial effects on the fuel cell performance. Thus the results suggest that significant savings in cost can be attained by reducing the platinum loading in underutilized regions of the catalyst layers, while at the same time improving the performance.
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. The performance of Polymer Electrolyte Membrane fuel cells depends on the design of the cell as well as the operating conditions. The design of the cell influences the complex interaction of activation effects, ohmic losses, and transport limitations, which in turn determines the local current density. Detailed models of the electrochemical reactions and transport phenomena in Polymer Electrolyte Membrane fuel cells can be used to determine the current density distribution for a given fuel cell design and operating conditions. In this work, three-dimensional, multicomponent and multiphase transport calculations are performed using a computational fluid dynamics code. The computational results for a full-scale fuel cell design show that ohmic effects due to drying of polymer electrolyte in the anode catalyst layer and membrane, and transport limitations of air and flooding in the cathode cause the current density to be a maximum near the gas channel inlets where ohmic losses and transport limitations are a minimum. Elsewhere in the cell, increased ohmic losses and transport limitations cause a decrease in current density, and the performance of the fuel cell is significantly lower than that which could be attained if the ohmic losses and transport limitations throughout the cell were the same as those near the gas channel inlets. Thus overall fuel cell design is critical in maximizing unit performance. Crown
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.