In this paper the zeroes of the polynomial F(x,z)=2x4−z3 in Gaussian integers Z[i] are determined, a problem equivalent to finding the solutions of the Diophatine equation x4+y4=z3 in Z[i], with a focus on the case x=y. We start by using an analytical method that examines the real and imaginary parts of the equation F(x,z)=0. This analysis sheds light on the general algebraic behavior of the polynomial F(x,z) itself and its zeroes. This in turn allows us a deeper understanding of the different cases and conditions that give rise to trivial and non-trivial solutions to F(x,z)=0, and those that lead to inconsistencies. This paper concludes with a general formulation of the solutions to F(x,z)=0 in Gaussian integers. Results obtained in this work show the existence of infinitely many non-trivial zeroes for F(x,z)=2x4−z3 under the general form x=(1+i)η3 and c=−2η4 for η∈Z[i].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.