The Intrusion Detection System (IDS) can be used broadly for securing the network. Intrusion detection systems (IDS) are typically positioned laterally through former protecting safety automation, like access control and verification, as a subsequent line of resistance that guards data classifications. Feature selection is employed to diminish the number of features in various applications where data has more than hundreds of attributes. Essential or relevant attribute recognition has converted a vital job to utilize data mining algorithms efficiently in today world situations. This article describes the comparative study on the Information Gain, Gain Ratio, Symmetrical Uncertainty, Chi-Square analysis feature selection techniques with different Classification methods like Artificial Neural Network, Naïve Bayes and Support Vector Machine. In this article, different performance metrics has utilized to choose the appropriate Feature Selection method for better data classification in IDS.
Many modern intrusion detection systems are based on data mining and database-centric architecture, where a number of data mining techniques have been found. Among the most popular techniques, association rule mining is one of the important topics in data mining research. This approach determines interesting relationships between large sets of data items. This technique was initially applied to the so-called market basket analysis, which aims at finding regularities in shopping behaviour of customers of supermarkets. In contrast to dataset for market basket analysis, which takes usually hundreds of attributes, network audit databases face tens of attributes. So the typical Apriori algorithm of association rule mining, which needs so many database scans, can be improved, dealing with such characteristics of transaction database. In this paper, a literature survey on the Association Rule Mining has carried out.
Network security has become more important to personal computer users, organizations, and the military. With the advent of the internet, security became a major concern and the history of security allows a better understanding of the emergence of security technology. The entire field of network security is vast and in an evolutionary stage. The range of study encompasses a brief history dating back to internet’s beginnings and the current development in network security. In order to understand the research being performed today, background knowledge of the importance of security, types of attacks in the networks. This paper elaborates theliterature study on network security in various domains in the year 2013 to 2018. Finally, it summarizes the research directions by literature survey.
Security is very important90 for any kind of networks. As a main communication mode, the security mechanism for multicast is not only the measure to ensure secured communications, but also the precondition for other security services. Attacks are one of the biggest concerns for security professionals. Attackers usually gain access to a large number of computers by exploiting their vulnerabilities to set up attack armies. This paper presents a double way authentication mechanism which uses the functionality of Elliptical Curve Cryptography, Kerberos System and RSA algorithm. ECC algorithm utilized to encrypt the user information whereas RSA used to encrypt the secret key itself to ensure the more security in the networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.