The magnetic excitations in multiferroic TbMnO3 have been studied by inelastic neutron scattering in the spiral and sinusoidally ordered phases. At the incommensurate magnetic zone center of the spiral phase, we find three low-lying magnons whose character has been fully determined using neutron-polarization analysis. The excitation at the lowest energy is the sliding mode of the spiral, and two modes at 1.1 and 2.5 meV correspond to rotations of the spiral rotation plane. These latter modes are expected to couple to the electric polarization. The 2.5 meV mode is in perfect agreement with recent infrared-spectroscopy data giving strong support to its interpretation as a hybridized phonon-magnon excitation.
The magnetic excitations in multiferroic TbMnO 3 have been investigated by inelastic scattering of polarized and unpolarized neutrons in the ferroelectric cycloidal and in the paraelectric collinear phase. The polarization analysis of the excitations at the incommensurate magnetic zone center allows one to determine the characters of three distinct modes. In particular we may identify those modes which may directly couple to the ferroelectric polarization. We find a rather complex magnon dispersion with branches split throughout the Brillouin zone, which should be a generic characteristic of elliptical cycloidal order.
The crystal and magnetic structure of La1−xSr1+xMnO4 (0 ≤ x ≤ 0.7) has been studied by diffraction techniques and high resolution capacitance dilatometry. There is no evidence for a structural phase transition like those found in isostructural cuprates or nickelates, but there are significant structural changes induced by the variation of temperature and doping which we attribute to a rearrangement of the orbital occupation.
Spin correlations in La2-xSrxCoO4 (0.3 < or = x < or = 0.6) have been studied by neutron scattering. The commensurate antiferromagnetic order of La2CoO4 persists in a very short range up to a Sr content of x = 0.3, whereas small amounts of Sr suppress commensurate antiferromagnetism in cuprates and in nickelates. La2-xSrxCoO4 with x > 0.3 exhibits incommensurate spin ordering with the modulation closely following the amount of doping. These incommensurate phases strongly resemble the stripe phases observed in cuprates and nickelates, but incommensurate magnetic ordering appears only at larger Sr content in the cobaltates due to a reduced charge mobility.
The magnon dispersion in the charge, orbital, and spin ordered phase in La1/2Sr3/2MnO4 has been studied by means of inelastic neutron scattering. We find excellent agreement with a magnetic interaction model based on the CE-type superstructure. The magnetic excitations are dominated by ferromagnetic exchange parameters revealing a nearly one-dimensional character at high energies. The strong ferromagnetic interaction in the charge or orbital ordered phase appears to be essential for the capability of manganites to switch between metallic and insulating phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.