Yeast cells are able to transition into a state of anhydrobiosis (temporary reversible suspension of metabolism) under conditions of desiccation. One of the most efficient approaches for understanding the mechanisms underlying resistance to dehydrationrehydration is to identify yeasts, which are stable under such treatments, and compare them with moderately resistant species and strains. In the current study, we investigated the resistance to dehydration-rehydration of six psychrotolerant yeast strains belonging to two species. All studied strains of Solicoccozyma terricola and Naganishia albida were found to be highly resistant to dehydration-rehydration. The viability of S. terricola strains was close to 100%. Such results have not been previously reported in studies of anhydrobiosis in yeasts. The plasma membrane changes, revealed by determining its permeability under various rehydration conditions, were also surprisingly minimal. Thus, the high level of resistance of psychrotolerant yeast strains might be related to the chemical composition and molecular organisation of their plasma membranes. Aside from plasma membrane characteristics, other important factors may also influence the maintenance of yeast cell viability under conditions of dehydration-rehydration.
The authors describe a new experimental model for lymphedema of rabbit ear. The method proved to be reliable and easily reproducible. The dilatation of lymph vessels after experimental provocation of lymphedema permits study of the physiopathologic basis of lymphovenous shunts created by means of microsurgery and proves to be helpful for the microsurgeon's practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.