This research paper proposes a novel voiceprint generation methodology for recognizing the speakers registered in a system. The proposed methodology is a keyword-dependent closed set speaker classification task. The features used are Mel-Spectrogram, Chromagram, MFCC and a new ensembled feature called Mel-Chroma. Mel-Chroma is generated with the combination of Mel-spectrogram and Chromagram. The Mel-Chroma spectrogram generated is converted into a binary image by using the average as the threshold. The recurrent neural network model LSTM is used for the classification task and the dataset used is FSDD. The proposed method has a higher accuracy than the state-of-art methods for the specific task. The accuracy obtained for the classification of speakers using a binary Mel-Chroma voiceprint is 98.33%.
Several Data mining techniques have been developed to enhance the prediction accuracy and analyze several events in Coronary Heart Disease (CHD). One among them was Extended Dynamic Bayesian Network (EDBN) which integrates temporal abstractions with DBN. Then EDBN was extended as Optimized Semi parametric Extended Dynamic Bayesian Network (OSEDBN) to handle Complex temporal abstractions in irregular interval time series data. The deep learning network is generated the various time points in the next level to improve the analysis and prediction of CHD. In this paper, Optimized Semi parametric Extended Deep Dynamic Bayesian Network (OSEDDBN) is proposed by integrating deep learning architecture with OSEDBN to improve the ability of extracting more important data and support complex structures from various types of input sources. Additionally the Fuzzy Analytic Hierarchy Process (FAHP) approach is used to compute the global weights for the attributes based on their individual contribution. The global weights of the attributes obtained by FAHP are utilized for training OSEDDBN to further improve the prediction of Coronary Heart Disease (CHD) risks. The performance of EDBN, OSEDBN, OSEDDBN, and OSEDDBN-FAHP are evaluated in terms of Precision, Recall and FMeasure.
The Major work in data pre-processing is handling Missing value imputation in Hepatitis Disease Diagnosis which is one of the primary stage in data mining. Many health datasets are typically imperfect. Just removing the cases from the original datasets can fetch added problems than elucidations. A appropriate technique for missing value imputation can assist to generate high-quality datasets for enhanced scrutinizing in clinical trials. This paper investigates the exploit of a machine learning technique as a missing value imputation process for incomplete Hepatitis data. Mean/mode imputation, ID3 algorithm imputation, decision tree imputation and proposed bootstrap aggregation based imputation are used as missing value imputation and the resultant datasets are classified using KNN. The experiment reveals that classifier performance is enhanced when the Bagging based imputation algorithm is used to foresee missing attribute values.
Breast cancer is the most leading cause of death in women nowadays. Screening mammography is currently the best available radiological technique for early detection of breast cancer. The detection of breast cancer is disturbed due to the existence of artifacts which reduce the rate of accuracy. For this reason, the pre-processing of mammogram images is very important in the process of breast cancer analysis because it reduces the number of false positives. This paper discusses about two existing filtering techniques and compares it with the results of a proposed filtering method. It is used to solve the noise removal problems and separate the background region from the breast profile region using an automatic thresholding technique. The results are evaluated on the pre-processing method on a set of images obtained from MIAS database. Thus this preparation phase improves the image quality and accentuates the CAD results more accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.