We present a systematic account of recent developments of the relativistic Lattice Boltzmann method (RLBM) for dissipative hydrodynamics. We describe in full detail a unified, compact and dimension-independent procedure to design relativistic LB schemes capable of bridging the gap between the ultra-relativistic regime, k B T mc 2 , and the non-relativistic one, k B T mc 2 . We further develop a systematic derivation of the transport coefficients as a function of the kinetic relaxation time in d = 1, 2, 3 spatial dimensions. The latter step allows to establish a quantitative bridge between the parameters of the kinetic model and the macroscopic transport coefficients. This leads to accurate calibrations of simulation parameters and is also relevant at the theoretical level, as it provides neat numerical evidence of the correctness of the Chapman-Enskog procedure. We present an extended set of validation tests, in which simulation results based on the RLBMs are compared with existing analytic or semi-analytic results in the mildly-relativistic (k B T ∼ mc 2 ) regime for the case of shock propagations in quark-gluon plasmas and laminar electronic flows in ultra-clean graphene samples. It is hoped and expected that the material collected in this paper may allow the interested readers to reproduce the present results and generate new applications of the RLBM scheme.
We present a new method for the numerical solution of the radiative-transfer equation (RTE) in multidimensional scenarios commonly encountered in computational astrophysics. The method is based on the direct solution of the Boltzmann equation via an extension of the Lattice Boltzmann (LB) equation and allows to model the evolution of the radiation field as it interacts with a background fluid, via absorption, emission, and scattering. As a first application of this method, we restrict our attention to a frequency independent (“grey”) formulation within a special-relativistic framework, which can be employed also for classical computational astrophysics. For a number of standard tests that consider the performance of the method in optically thin, optically thick and intermediate regimes with a static fluid, we show the ability of the LB method to produce accurate and convergent results matching the analytic solutions. We also contrast the LB method with commonly employed moment-based schemes for the solution of the RTE, such as the M1 scheme. In this way, we are able to highlight that the LB method provides the correct solution for both non-trivial free-streaming scenarios and the intermediate optical-depth regime, for which the M1 method either fails or provides inaccurate solutions. When coupling to a dynamical fluid, on the other hand, we present the first self-consistent solution of the RTE with LB methods within a relativistic-hydrodynamic scenario. Finally, we show that besides providing more accurate results in all regimes, the LB method features smaller or comparable computational costs compared to the M1 scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.