In the present study the stress transfer mechanism in graphene-polymer systems under tension is examined experimentally using the technique of laser Raman microscopy. We discuss in detail the effect of graphene edge geometry, lateral size and thickness which need to be taken under consideration when using graphene as a protective layer. The systems examined comprised of graphene flakes with large length (over ~50 microns) and thickness of one to three layers simplydeposited onto PMMA substrates which were then loaded to tension up to ~1.60% strain. The stress transfer profiles were found to be linear while the results show that large lateral sizes of over twenty microns are needed in order to provide effective reinforcement at levels of strain higher than 1%. Moreover, the stress-built up has been found to be quite sensitive to both edge shape and geometry of the loaded flake. Finally, the transfer lengths were found to increase with the increase of graphene layers. The outcomes of the present study provide crucial insight on the issue of stress transfer from polymer to nano-inclusions as a function of edge geometry, lateral size and thickness in a number of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.