Profit margins for essential foodstuffs could be a demand rising problem. There are several variables influencing currency fluctuations. For example, the various variables of commodity food prices are climate, crude prices, and so on. Forecasting the fluctuating prices of basic foodstuffs is also relevant even for the government, producers, and customers. The article will use ARCH (autoregressive conditional heteroskedasticity) to forecast the essential food market considering external conditions. The findings agree well enough with the assessment price in the industry by employing two main approaches, ARCH and GARCH (generalized autoregressive conditional heteroskedasticity). For jalapeno, the best result (96.87%) in estimating the cost of employing ARCH is achieved. In the meantime, the best result (99.94%) for the basic food tomato is observed using GARCH. Proportionally, the ARCH is stronger than GARCH, since GARCH is very consistent without disrupting current information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.