The main aim of the present work was to formulate anti-neoplastic drug loaded polymeric nanoparticles using biodegradable polymers (Chitosan and Eudragit RS 100) by emulsion droplet coalescence method. The model drug used here is 5-fluorouracil which is a pyrimidine analogue that is mainly used to treat colonic carcinoma, under the category of anti-neoplastic drugs. Tween 20 was used as emulsifier and colloidal stabilizer. The prepared nanoparticles were evaluated for particle size, surface morphology by TEM, surface charge, drug loading and entrapment efficiency, and for drug release by diffusion. Results show that the prepared nanoparticles are in nanosize, below 1000 nm, having appropriate zeta potential values with better entrapment of drug and controlled release of drug for a period of 12 h. From the obtained formulations, EF5 was selected as best with high entrapment efficiency, optimum zeta potential, and showing more controlled release of drug.
The purpose of this study was to investigate the efficiency of superdisintegrants: sodium starch glycolate, croscarmellose sodium and crospovidone in promoting tablet disintegration and drug dissolution of Topiramate immediate release tablets. The efficiency of superdisintegrants was tested, by considering four concentrations, viz., like 2%, 3%, 4% and 5% in the formulations. The dissolution was carried out in USP apparatus II at 50 rpm with distilled water as a dissolution medium. The dissolution rate of the model drug topiramate was found highly dependent on the tablet disintegration, on the particle size of the superdisintegrant, on the solubility of the drug and also on the type of superdisintegrant in the dissolution medium. There was no effect of the diluent (Lactose monohydrate) on the disintegration of different concentrations of superdisintegrants. These results suggest that, as determined by the f2 metric (similarity factor), the dissolution profile of the formulation containing 4% sodium starch glycolate and lactose monohydrate as a diluent was similar to that of a marketed product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.