Recent studies have indicated that sepsis is associated with enhanced generation of several free-radical species (nitric oxide [NO], superoxide, hydrogen peroxide) in skeletal muscle. It is also known that this enhanced free-radical generation results in reductions in skeletal muscle force-generating capacity, but the precise mechanism(s) by which free radicals exert this effect in sepsis has not been determined. We postulated that free radicals might react directly with the contractile proteins in this condition, altering contractile protein force-generating capacity. To test this theory, we compared the force generation of single Triton-skinned diaphragmatic fibers (Triton skinning exposes the contractile apparatus, permitting direct assessment of contractile protein function) from the following groups of rats: (1) control animals; (2) endotoxin-treated animal; (3) animals given endotoxin plus polyethylene glycol- superoxide dismutase (PEG-SOD), a superoxide scavenger; (4) animals given endotoxin plus N(omega)-nitro-L-arginine methylester (L-NAME), a NO synthase inhibitor; (5 ) animals given only PEG-SOD or L-NAME; and (6 ) animals given endotoxin plus denatured PEG-SOD. We found that endotoxin administration produced both a reduction in the maximum force-generating capacity (Fmax) (i.e., a decrease in Fmax) of muscle fibers and a reduction in fiber calcium sensitivity (i.e., an increase in the Ca2+ concentration required to produce half-maximal activation [Ca50]). L-NAME and PEG-SOD administration preserved Fmax and Ca50 in endotoxin-treated animals; neither drug affected these parameters in non-endotoxin treated animals. Denatured PEG-SOD failed to inhibit endotoxin-related alterations in contractile protein function. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of skinned fibers from endotoxin-treated animals revealed a selective depletion of several proteins; administration of L-NAME or PEG-SOD to endotoxin-treated animals prevented this protein depletion, paralleling the effect of these two agents to prevent a reduction in contractile protein force-generating capacity. These data indicate that free radicals (superoxide, NO, or daughter species of these radicals) play a central role in altering skeletal muscle contractile protein force-generating capacity in endotoxin-induced sepsis.
Recent work indicates that respiratory muscles generate superoxide radicals during contraction (M. B. Reid, K. E. Haack, K. M. Francik, P. A. Volberg, L. Kabzik, and M. S. West. J. Appl. Physiol. 73: 1797-1804, 1992). The intracellular pathways involved in this process are, however, unknown. The purpose of the present study was to test the hypothesis that contraction-related formation of reactive oxygen species (ROS) by skeletal muscle is linked to activation of the 14-kDa isoform of phospholipase A(2) (PLA(2)). Studies were performed by using an in vitro hemidiaphragm preparation submerged in an organ bath, and formation of ROS in muscles was assessed by using a recently described fluorescent indicator technique. We examined ROS formation in resting and contracting muscle preparations and then determined whether contraction-related ROS generation could be altered by administration of various PLA(2) inhibitors: manoalide and aristolochic acid, both inhibitors of 14-kDa PLA(2); arachidonyltrifluoromethyl ketone (AACOCF(3)), an inhibitor of 85-kDa PLA(2); and haloenol lactone suicide substrate (HELSS), an inhibitor of calcium-independent PLA(2). We found 1) little ROS formation [2.0 +/- 0.8 (SE) ng/mg] in noncontracting control diaphragms, 2) a high level of ROS (20.0 +/- 2.0 ng/mg) in electrically stimulated contracting diaphragms (trains of 20-Hz stimuli for 10 min, train rate 0.25 s(-1)), 3) near-complete suppression of ROS generation in manoalide (3.0 +/- 0.5 ng/mg, P < 0. 001)- and aristolochic acid-treated contracting diaphragms (4.0 +/- 1.0 ng/mg, P < 0.001), and 4) no effect of AACOCF(3) or HELSS on ROS formation in contracting diaphragm. During in vitro studies examining fluorescent measurement of ROS formation in response to a hypoxanthine/xanthine oxidase superoxide-generating solution, manoalide, aristolochic acid, AACOCF(3), and HELSS had no effect on signal intensity. These data indicate that ROS formation by contracting diaphragm muscle can be suppressed by the administration of inhibitors of the 14-kDa isoform of PLA(2) and suggest that this enzyme plays a critical role in modulating ROS formation during muscle contraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.