Recessive mutations in two of the three collagen VI genes, COL6A2 and COL6A3, have recently been shown to cause Ullrich congenital muscular dystrophy (UCMD), a frequently severe disorder characterized by congenital muscle weakness with joint contractures and coexisting distal joint hyperlaxity. Dominant mutations in all three collagen VI genes had previously been associated with the considerably milder Bethlem myopathy. Here we report that a de novo heterozygous deletion of the COL6A1 gene can also result in a severe phenotype of classical UCMD precluding ambulation. The internal gene deletion occurs near a minisatellite DNA sequence in intron 8 that removes 1.1 kb of genomic DNA encompassing exons 9 and 10. The resulting mutant chain contains a 33-amino acid deletion near the amino-terminus of the triple-helical domain but preserves a unique cysteine in the triple-helical domain important for dimer formation prior to secretion. Thus, dimer formation and secretion of abnormal tetramers can occur and exert a strong dominant negative effect on microfibrillar assembly, leading to a loss of normal localization of collagen VI in the basement membrane surrounding muscle fibers. Consistent with this mechanism was our analysis of a patient with a much milder phenotype, in whom we identified a previously described Bethlem myopathy heterozygous in-frame deletion of 18 amino acids somewhat downstream in the triple-helical domain, a result of exon 14 skipping in the COL6A1 gene. This deletion removes the crucial cysteine, so that dimer formation cannot occur and the abnormal molecule is not secreted, preventing the strong dominant negative effect. Our studies provide a biochemical insight into genotype-phenotype correlations in this group of disorders and establish that UCMD can be caused by dominantly acting mutations.
Although much is known about genetic variation in human and African great ape (chimpanzee, bonobo, and gorilla) genomes, substantially less is known about variation in gene-expression profiles within and among these species. This information is necessary for defining transcriptional regulatory networks that contribute to complex phenotypes unique to humans or the African great apes. We took a systematic approach to this problem by investigating gene-expression profiles in well-defined cell populations from humans, bonobos, and gorillas. By comparing these profiles from 18 human and 21 African great ape primary fibroblast cell lines, we found that gene-expression patterns could predict the species, but not the age, of the fibroblast donor. Several differentially expressed genes among human and African great ape fibroblasts involved the extracellular matrix, metabolic pathways, signal transduction, stress responses, as well as inherited overgrowth and neurological disorders. These gene-expression patterns could represent molecular adaptations that influenced the development of species-specific traits in humans and the African great apes.
Mutations in the genes encoding collagen VI (COL6A1, COL6A2, and COL6A3) cause Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD), two related conditions of differing severity. BM is a relatively mild dominantly inherited disorder characterized by proximal weakness and distal joint contractures. UCMD was originally regarded as an exclusively autosomal recessive condition causing severe muscle weakness with proximal joint contractures and distal hyperlaxity. We and others have subsequently modified this model when we described UCMD patients with heterozygous in-frame deletions acting in a dominant-negative way. Here we report 10 unrelated patients with a UCMD clinical phenotype and de novo dominant negative heterozygous splice mutations in COL6A1, COL6A2, and COL6A3 and contrast our findings with four UCMD patients with recessively acting splice mutations and two BM patients with heterozygous splice mutations. We find that the location of the skipped exon relative to the molecular structure of the collagen chain strongly correlates with the clinical phenotype. Analysis by immunohistochemical staining of muscle biopsies and dermal fibroblast cultures, as well as immunoprecipitation to study protein biosynthesis and assembly, suggests different mechanisms each for exon skipping mutations underlying dominant UCMD, dominant BM, and recessive UCMD. We provide further evidence that de novo dominant mutations in severe UCMD occur relatively frequently in all three collagen VI chains and offer biochemical insight into genotype-phenotype correlations within the collagen VI-related disorders by showing that severity of the phenotype depends on the ability of mutant chains to be incorporated in the multimeric structure of collagen VI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.