Coronavirus is a large family of viruses that affects humans and damages respiratory functions ranging from cold to more serious diseases such as ARDS and SARS. But the most recently discovered virus causes COVID-19. Isolation at home or hospital depends on one’s health history and conditions. The prevailing disease that might get instigated due to the existence of the virus might lead to deterioration in health. Therefore, there is a need for early detection of the virus. Recently, many works are found to be observed with the deployment of techniques for the detection based on chest X-rays. In this work, a solution has been proposed that consists of a sample prototype of an AI-based Flask-driven web application framework that predicts the six different diseases including ARDS, bacteria, COVID-19, SARS, Streptococcus, and virus. Here, each category of X-ray images was placed under scrutiny and conducted training and testing using deep learning algorithms such as CNN, ResNet (with and without dropout), VGG16, and AlexNet to detect the status of X-rays. Recent FPGA design tools are compatible with software models in deep learning methods. FPGAs are suitable for deep learning algorithms to make the design as flexible, innovative, and hardware acceleration perspective. High-performance FPGA hardware is advantageous over GPUs. Looking forward, the device can efficiently integrate with the deep learning modules. FPGAs act as a challenging substitute podium where it bridges the gap between the architectures and power-related designs. FPGA is a better option for the implementation of algorithms. The design attains 121µW power and 89 ms delay. This was implemented in the FPGA environment and observed that it attains a reduced number of gate counts and low power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.