The most common technique used for image processing applications is ‘The wavelet transformation’. The Discrete Wavelet Transform (DWT) keeps the time as well as frequency information depend on a multi resolution analysis structure, where the other classical transforms like Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT) will not do that. Because of this feature, the quality of the repaired image is improved when comparing to the other transforms. To implement the DWT on a real time codec, a fast device needs to be targeted. While comparing with the other implementation such as PCs, ARM processors, DSPs etc, Field Programmable Gate Array (FPGA) implementation of DWT had better processing speed and costs were vey less. A Fast Architecture based DWT using Kogge Stone Adder is proposed in this paper where the coefficients of lifting scheme are calculated by using Shift adder and Kogge Stone Adder where other techniques used multiplier. The most important intention of the suggested technique is to use minimum calculation and limited memory. The simulation of the suggested design is dole out on the Xilinx 14.1 style tool and also the performance is evaluated and compared with the present architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.