Uranium concentrations in groundwater taken from private drilled wells have been never determined in Poland, implying a lack of available data to quantify the human exposure to U through drinking water consumption, especially in rural areas infl uenced by mining activities. The main aim of the study was the assessment of human health risk related to the consumption of well waters containing U, collected from selected rural areas of the Lower Silesian region (Poland). The random daytime (RDT) sampling method was applied to the collection of well waters from three control study areas ( . The average %TDI and ranges of individual %TDI (adults/children) were: 0.17%/0.52% and 0.02-3.4%/0.05-10.3% (CSA-A), 1.3%/4.0% and 0.09-35%/0.27-106% (CSA-B), and 1.3%/3.8% and 0.02-90%/0.06-271% (CSA-C). The estimated average CDI values of U through well water are signifi cantly lower than the TDI (1 μg · kg -1 · day -1 ), while for individual CDI values the contribution to the TDI can reach even 90% (adults) and 271% (children), indicating essential human health risk for children consuming well water from private drilled wells located in CSA-B and CSA-C (5.3% of total number of samples collected).
A comprehensive study was undertaken in order to examine the possible adverse effect of jug filter systems (JFSs) on the quality of filtered water taking into account the released amounts of silver (Ag) into the filtered test water. Nine brands of JFSs (A-I) were investigated according to BS 8427:2004 using a validated ICP/MS method. Essential modification of BS 8427:2004 within the domain of the composite sample preparation was proposed and applied during the tests. The established grand mean concentrations of released Ag from A-H classic cartridges (containing Ag-modified activated carbon and ion exchange resins) and I classic cartridge (containing non-modified activated carbon and ion exchange resin) installed in corresponding JFSs were in the range of 2.6-13.1 µg l⁻¹ and lower than 0.014 µg l⁻¹, respectively. These values were applied for the estimation of the daily intakes of Ag connected with the consumption of water filtered using JFSs (ranging from < 0.0004 to 0.374 µg kg⁻¹ day⁻¹). After taking into account the grand mean concentrations of Ag established during the whole cycle of exploitation for nine JFSs and on the basis of available toxicological data for this element, no long-term risk for human health with respect to appearance of argyria (a condition caused by improper exposure to the Ag or Ag compounds) could be expected (the Hazard Quotient indices estimated as ratios of the daily intakes to the reference dose of Ag were equal or lower than 0.075). Ag-modified activated carbon is not included in the positive list of the authorised substances of the European Commission Regulation (EU) No. 10/2011. Additionally, this material has not been approved by European Food Safety Authority (EFSA). A part of water filtered by JFSs can be directly consumed as drinking water and additionally the remaining water can be applied for the preparation of food products (drinks, soups, etc.). In both cases the quality of water has to fulfil the requirements listed in Directive 98/83/EC (Regulation (EC) No. 178/2002 defines the quality of water intentionally incorporated into the food after the point of compliance as defined in Article 6 of Directive 98/83/EC). However, it should be underlined that point-of-use water treatment units (including JFSs) are not regulated under Directive 98/83/EC and additionally the parametric value for Ag is not included in this document. Therefore, a provisional migration limit for Ag leached from JFSs at the level of 25 µg l⁻¹ was proposed. This value for Ag would limit intake to less than 13% of the human No Observed Adverse Effect Level (NOAEL) (0.39 mg person⁻¹ day⁻¹), using an assumption that each day 2 L of filtered water is consumed containing this metal at the provisional migration limit. All the JFSs tested meet this requirement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.