In the framework of the European I-Smart project, optimal 4H-SiC based diode geometries were developed for high temperature neutron detection. Irradiation tests were conducted with 14 MeV fast neutrons supplied by a deuteriumtritium neutron generator with an average neutron yield of 4.04 × 10 10 − 5.25 × 10 10 n/s at Neutron Laboratory of the Technical University of Dresden in Germany. In this paper, we interpret the first measurements and results with 4H-SiC detector irradiated with fast neutrons from room temperature up to 500 • C. These experiments are serving also the first simulation of the harsh environmental condition measurements in the tritium breeding blanket of the ITER fusion reactor, which is one of the most prominent planned location of high temperature neutron flux characterization studies in the near future.
Abstract. In this work we presented two types of 4H-SiC semiconductor detectors (D1 and D2) both based on ion implantation of 10 B inside the aluminum metallic contact. The first detector shows a high leakage current after the implantation and low signal to noise ratio. However, improvements concerning the implantation parameters and the distance between the implanted 10 B thermal neutron converter layer and the active pn-junction have led to low leakage current and thus to higher signal to noise ratio. This proves the strength of this new method of realizing sensitive SiC-based thermal neutron detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.