After the All-Sky Automated Survey for SuperNovae (ASAS-SN) discovered a significant brightening of the inner region of NGC 2617, we began a ∼ 70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such "changing look Active Galactic Nuclei (AGN)" are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole to be (4 ± 1) × 10 7 M ⊙ . When we crosscorrelate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2 − 3 days) to the NIR (6 − 9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a black hole of the estimated mass that is illuminated by the observed, variable X-ray fluxes.
We present ground-based and Swift photometric and spectroscopic observations of the candidate tidal disruption event (TDE) ASASSN-14li, found at the center of PGC 043234 (d 90 Mpc) by the All-Sky Automated Survey for SuperNovae (ASAS-SN). The source had a peak bolometric luminosity of L 10 44 ergs s −1 and a total integrated energy of E 7 × 10 50 ergs radiated over the ∼ 6 months of observations presented. The UV/optical emission of the source is well-fit by a blackbody with roughly constant temperature of T ∼ 35, 000 K, while the luminosity declines by roughly a factor of 16 over this time. The optical/UV luminosity decline is broadly consistent with an exponential decline, L ∝ e −t/t0 , with t 0 60 days. ASASSN14li also exhibits soft X-ray emission comparable in luminosity to the optical and UV emission but declining at a slower rate, and the X-ray emission now dominates. Spectra of the source show broad Balmer and helium lines in emission as well as strong blue continuum emission at all epochs. We use the discoveries of ASASSN14li and ASASSN-14ae to estimate the TDE rate implied by ASAS-SN, finding an average rate of r 4.1 × 10 −5 yr −1 per galaxy with a 90% confidence interval of (2.2 − 17.0) × 10 −5 yr −1 per galaxy. ASAS-SN found roughly 1 TDE for every 70 Type Ia supernovae in 2014, a rate that is much higher than that of other surveys.
ASASSN-14ae is a candidate tidal disruption event (TDE) found at the center of SDSS J110840.11+340552.2 (d 200 Mpc) by the All-Sky Automated Survey for Supernovae (ASAS-SN). We present ground-based and Swift follow-up photometric and spectroscopic observations of the source, finding that the transient had a peak luminosity of L 8 × 10 43 erg s −1 and a total integrated energy of E 1.7 × 10 50 ergs radiated over the ∼ 5 months of observations presented. The blackbody temperature of the transient remains roughly constant at T ∼ 20, 000 K while the luminosity declines by nearly 1.5 orders of magnitude during this time, a drop that is most consistent with an exponential, L ∝ e −t/t0 with t 0 39 days. The source has broad Balmer lines in emission at all epochs as well as a broad He II feature emerging in later epochs. We compare the color and spectral evolution to both supernovae and normal AGN to show that ASASSN-14ae does not resemble either type of object and conclude that a TDE is the most likely explanation for our observations. At z = 0.0436, ASASSN-14ae is the lowest-redshift TDE candidate discovered at optical/UV wavelengths to date, and we estimate that ASAS-SN may discover 0.1 − 3 of these events every year in the future.
We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of Mu ,AB = -23.5 ± 0.1 and bolometric luminosity Lbol = (2.2 ± 0.2) × 10(45) ergs s(-1), which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (MK ≈ -25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1 ± 0.2) × 10(52) ergs, challenging the magnetar model for its engine.
We present the results from a detailed analysis of photometric and spectrophotometric data on five Seyfert 1 galaxies observed as a part of a recent reverberation mapping program. The data were collected at several observatories over a 140-day span beginning in 2010 August and ending in 2011 January. We obtained high sampling-rate light curves for Mrk 335, Mrk 1501, 3C 120, Mrk 6, and PG 2130+099, from which we have measured the time lag between variations in the 5100Å continuum and the Hβ broad emission line. We then used these measurements to calculate the mass of the supermassive black hole at the center of each of these galaxies. Our new measurements substantially improve previous measurements of M BH and the size of the broad line-emitting region for four sources and add a measurement for one new object. Our new measurements are consistent with photoionization physics regulating the location of the broad line region in active galactic nuclei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.