After the All-Sky Automated Survey for SuperNovae (ASAS-SN) discovered a significant brightening of the inner region of NGC 2617, we began a ∼ 70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such "changing look Active Galactic Nuclei (AGN)" are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole to be (4 ± 1) × 10 7 M ⊙ . When we crosscorrelate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2 − 3 days) to the NIR (6 − 9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a black hole of the estimated mass that is illuminated by the observed, variable X-ray fluxes.
The All-Sky Automated Survey for Supernovae (ASAS-SN) is working towards imaging the entire visible sky every night to a depth of V ∼ 17 mag. The present data covers the sky and spans ∼ 2-5 years with ∼ 100-400 epochs of observation. The data should contain some ∼ 1 million variable sources, and the ultimate goal is to have a database of these observations publicly accessible. We describe here a first step, a simple but unprecedented web interface https://asas-sn.osu.edu/ that provides an up to date aperture photometry light curve for any user-selected sky coordinate. Because the light curves are produced in real time, this web tool is relatively slow and can only be used for small samples of objects. However, it also imposes no selection bias on the part of the ASAS-SN team, allowing the user to obtain a light curve for any point on the celestial sphere. We present the tool, describe its capabilities, limitations, and known issues, and provide a few illustrative examples.
On 2017 August 17, gravitational waves were detected from a binary neutron star merger, GW170817, along with a coincident short gamma-ray burst,GRB170817A. An optical transient source, Swope Supernova Survey 17a (SSS17a), was subsequently identified as the counterpart of this event. We present ultraviolet, optical and infrared light curves of SSS17a extending from 10.9 hours to 18 days post-merger. We constrain the radioactively-powered transient resulting from the ejection of neutron-rich material. The fast rise of the light curves, subsequent decay, and rapid color evolution are consistent with multiple ejecta components of differing lanthanide abundance. The late-time light curve in-2 dicates that SSS17a produced at least ∼0.05 solar masses of heavy elements, demonstrating that neutron star mergers play a role in r-process nucleosynthesis in the Universe.The discovery of gravitational waves (GWs) from coalescing binary black holes by the Laser Interferometer Gravitational Wave Observatory (LIGO) has transformed the study of compact objects in the Universe (1, 2). Unlike black holes, merging neutron stars are expected to produce electromagnetic radiation. The electromagnetic signature of such an event can provide more information than the GW signal alone: constraining location of the source, reducing the degeneracies in GW parameter estimation (3), probing the expansion rate of the Universe (4,5), and producing a more complete picture of the merger process (6, 7).Short gamma-ray bursts (GRBs) have long been expected to result from neutron star mergers (8, 9), and therefore would be a natural electromagnetic counterpart to GWs (10). Unfortunately, their emission is beamed, so that it may not intersect our line of sight (11). The possibility that only a small fraction of GRBs may be detectable has motivated theoretical and observational searches for more-isotropic electromagnetic signatures, such as an astronomical transient powered by the radioactive decay of neutron-rich ejecta from the merger. (12)(13)(14)(15)(16)(17). Referred to as a macronova or kilonova, the detection of these events would provide information on the origin of many of the heaviest elements in the periodic table (18).It has long been realized that approximately half of the elements heavier than iron are created via r-process nucleosynthesis-the capture of neutrons onto lighter seed nuclei on a timescale more rapid than β-decay pathways (19,20). However, it is less clear where the r-process predominantly occurs, namely whether the primary sources of these elements are core-collapse supernovae or compact binary mergers (black hole-neutron star or neutron starneutron star) (21,22). For supernovae, direct detection of the electromagnetic signatures from r-process nucleosynthesis is obscured by the much larger luminosity originating from hydrogen 3 recombination (for hydrogen-rich supernovae) or nickel-56 and cobalt-56 decay (for hydrogenpoor supernovae). By contrast, it may be possible to measure the r-process nucleosynthesis after a compact ob...
We present ground-based and Swift photometric and spectroscopic observations of the candidate tidal disruption event (TDE) ASASSN-14li, found at the center of PGC 043234 (d 90 Mpc) by the All-Sky Automated Survey for SuperNovae (ASAS-SN). The source had a peak bolometric luminosity of L 10 44 ergs s −1 and a total integrated energy of E 7 × 10 50 ergs radiated over the ∼ 6 months of observations presented. The UV/optical emission of the source is well-fit by a blackbody with roughly constant temperature of T ∼ 35, 000 K, while the luminosity declines by roughly a factor of 16 over this time. The optical/UV luminosity decline is broadly consistent with an exponential decline, L ∝ e −t/t0 , with t 0 60 days. ASASSN14li also exhibits soft X-ray emission comparable in luminosity to the optical and UV emission but declining at a slower rate, and the X-ray emission now dominates. Spectra of the source show broad Balmer and helium lines in emission as well as strong blue continuum emission at all epochs. We use the discoveries of ASASSN14li and ASASSN-14ae to estimate the TDE rate implied by ASAS-SN, finding an average rate of r 4.1 × 10 −5 yr −1 per galaxy with a 90% confidence interval of (2.2 − 17.0) × 10 −5 yr −1 per galaxy. ASAS-SN found roughly 1 TDE for every 70 Type Ia supernovae in 2014, a rate that is much higher than that of other surveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.