The Martian Moons eXploration (MMX) mission will study the Martian moons Phobos and Deimos, Mars, and their environments. The mission scenario includes both landing on the surface of Phobos to collect samples and deploying a small rover for in-situ observations. Engineering safeties and scientific planning for these operations require appropriate evaluations of the surface environment of Phobos. Thus, the mission team organized the Landing Operation Working Team (LOWT) and Surface Science and Geology Sub-Science Team (SSG-SST), whose view of the Phobos environment is summarized in this paper. While orbital and large-scale characteristics of Phobos are relatively well known, characteristics of the surface regolith, including the particle size-distributions, the packing density, and the mechanical properties, are difficult to constrain. Therefore, we developed several types of simulated soil materials (simulant), such as UTPS-TB (University of Tokyo Phobos Simulant, Tagish-lake based), UTPS-IB (Impact-hypothesis based), and UTPS-S (Simpler version) for engineering and scientific evaluation experiments.
I finished reading Curtis Peebles' book Asteroids: A History with mixed emotions, but overall I was very disappointed. I enjoyed, with some reservations, the first few chapters, which describe the early days of asteroid astronomy. One thing that makes asteroid science enjoyable today is the rich collection of interesting and eccentric characters that share this profession.
The 19th and early 20th centuries were no different. The story of these dedicated and sometimes strange individuals makes for lively reading. There was Hermann Goldschmidt, a German‐born artist living over the Café Procope in Paris. In 1852, he caught the asteroid bug after attending a public lecture on astronomy, bought a telescope, and over the next 9 years discovered 14 asteroids by observing out of his apartment window with a 2‐inch telescope! In those days, before astronomical photography, observers searched for asteroids by hand‐drawing the starfield as seen through the telescope and then comparing it with another hand‐drawn starfield done hours or nights later. Keen eyesight, steady hands, and the ability to draw accurately in the dark—and cold—were major advantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.