Abstract. Results from a tightly constrained photochemical point model for OH and HO2 are compared to OH and HO2 data collected during the Program for •e•earch on Oxidants: Photochemistry, Emissions, and Transport (PROPHET) summer 1998 intensive campaign held in northern Michigan. The PROPHET campaign was located in a deciduous forest marked by relatively low NOz levels and high isoprene emissions. Detailed HOz budgets are presented. The model is generally unable to match the measured OH, with the observations 2.7 times greater than the model on average. The model HO2, however, is in good agreement with the measured HO2. Even with an additional postulated OH source from the ozonolysis of unmeasured terpenes, the measured OH is 1.5 times greater than the model; the model HO2 with this added source is 15% to 30% higher than the measured HO2. Moreover, the HO2/OH ratios as modeled are 2.5 to 4 times higher than the measured ratios, indicating that the cycling between OH and HO2 is poorly described by the model. We discuss possible reasons for the discrepancies.
Abstract. Diurnal measurements ot hydroxyl and hydroperoxy radicals (OH ---'during the Program for Research on Oxidants: Photochemistry, Emissions. and Transport (PROPHET) summer intensive of 1998 indicate that these key components of gas phase atmospheric oxidation are sustained in significant amounts throughout the night in this northern forested region. Typical overnight levels of OH observed were 0.04 parts per trillion (pptv) (1.1 x 106 molecules/cm3), while HO2 concentrations ranged from 1 to 4 pptv.Results of diagnostic testing performed before, after, and during the deployment suggest little possibility of interferences in the measurements. Collocated measurements of the reactive biogenic hydrocarbon isoprene corroborate the observed levels of OH by exhibiting significant decays overnight above the torest canopy. The observed isoprene lifetimes ranged t¾om 1.5 to 12 hours in the dark, and they correlate well to those expected from chemical oxidation by the measured OH abundances. Possible dark reactions that could generate such elevated levels of OH include the ozonolysis of extremely reactive biogenic terpenoids. However, in steady state models, which include this hypothetical production mechanism, HO: radicals are generated in greater quantities than were measured. Nonetheless, if the measurements are representative of the nocturnal boundary layer in midlatitude temperate forests, this observed nocturnal phenomenon might considerably alter our understanding of the diurnal pattern of atmospheric oxidation in such pristine, low-NOt environments.
[1] Mixing ratios of isoprene, methyl vinyl ketone (MVK), and methacrolein (MACR) were determined continuously during an 8-day period in the summer of 1998 at a rural forested site located within the University of Michigan Biological Station (UMBS). The measurements were obtained as part of the Program for Research on Oxidants: Photochemistry, Emissions, and Transport (PROPHET) study. Fluxes of isoprene were concurrently measured at a nearby tower (AmeriFlux, located 132 m north-northeast of the PROPHET tower). Following the study, 1-kmresolution emission estimates were derived for isoprene within a 60-km radius of the tower using forest density estimates (Biogenic Emissions Inventory System (BEIS3) model). Measured isoprene fluxes at the site compared well with modeled isoprene fluxes when using BEIS3 and a detailed leaf litter-fall data set by tree species from the UMBS site. Mean midday (1000 -1400 LT) mixing ratios for isoprene, MACR, and MVK were 1.90 ± 0.43, 0.07 ± 0.01, and 0.14 ± 0.04 ppbv, respectively. Median midday mixing ratios of these compounds were 1.96 ± 0.26, 0.06 ± 0.02, and 0.10 ± 0.02 ppbv, respectively. Ratios of the isoprene oxidation products to isoprene are understood in the context of previous laboratory and field measurement studies of these compounds and a simple consecutive reaction scheme model. Results of the model indicate that the air masses studied represented relatively fresh emissions with a photochemical age of measured isoprene between 3.6 and 18 min, which is significantly less than the photochemical lifetime of isoprene (t = 45 min at [OH] = 3.35 Â 10 6 molecules cm À3 ). Thus a large portion of the isoprene that reaches the manifold has not had time to react completely with OH, yielding lower than expected ratios based on model calculations that do not explicitly take this into account. A rapid decrease in isoprene mixing ratios was observed soon after sunset, followed by a slower decay throughout the rest of the night. Emission maps were generated indicating that isoprene fluxes are highest in the immediate vicinity of the tower compared to the surrounding area of the site. Thus vertical diffusion and advection from the surrounding region are postulated to cause the observed initial rapid decrease in isoprene at the site. The second isoprene decay may be due to chemistry and/or dynamics, but the effects cannot be separated with the available data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.