In this paper we review some metasurfaces with negative values of effective refractive index, as scaffolds for a new generation of surface plasmon polariton-based biological or chemical sensors. The electromagnetic properties of a metasurface may be tuned by its full immersion into analyte, or by the adsorption of a thin layer on it, both of which change its properties as a plasmonic guide. We consider various simple forms of plasmonic crystals suitable for this purpose. We start with the basic case of a freestanding, electromagnetically symmetrical plasmonic slab and analyze different ultrathin, multilayer structures, to finally consider some two-dimensional “wallpaper” geometries like split ring resonator arrays and fishnet structures. A part of the text is dedicated to the possibility of multifunctionalization where a metasurface structure is simultaneously utilized both for sensing and for selectivity enhancement. Finally we give an overview of surface-bound intrinsic electromagnetic noise phenomena that limits the ultimate performance of a metasurfaces sensor.
In this work we consider the tuning of spectral reflectance of fishnet metamaterials with circular or elliptic apertures due to the presence of dielectric analyte adsorbed within the pores of the dielectric part. We simulated the electromagnetic response of the fishnet metamaterials for the optical range utilizing the finite element method. Our investigation is dedicated to ultrathin, freestanding laminated structures (metal-dielectric-metal self-supported nanomembrane sandwiches with nanometric thickness). We also investigated some issues connected with experimental fabrication of the freestanding fishnets for adsorbtion-based sensors.
We designed and fabricated metal-dielectric multilayers intended for passband filters in the ultraviolet range. We determined the dispersion characteristics by the Bloch approach to evanescent wave resonant coupling and calculated the spectral characteristics using the transfer matrix method while taking into account real dispersion and absorptive losses. We considered the influence of nanoscale interface roughness as a means to couple evanescent electromagnetic field to the propagating far field modes. In our structures both propagating and evanescent modes contribute to the overall performance, resulting in an enhanced transmission in the desired range, while retaining a strong suppression of undesired frequencies of more than four orders of magnitude. In our experiments we used radiofrequent sputtering of silver and silica and characterized our multilayers by UV-vis spectroscopy.
We investigated the influence of zero-point fluctuations (vacuum fluctuations, optical quantum noise) to the optical response of electromagnetic metamaterials containing dielectrics with third-order Kerr-like nonlinearity. We determined the zero-point noise and calculated it for different analytes, including those used in forensic analysis and organic pollutants. The zero-point noise level is highest for shortest-wavelength plasmons and decreases towards long-range plasmons. It may be tailored through a convenient design of the metamaterial structure. Since noise spectral power is proportional to the nonlinearity of the analyte species present, we considered the possibility to use zero-point noise as an auxiliary tool for identification of targeted nonlinear samples. We believe that our investigation could be of importance in homeland defence, forensics, biomedicine, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.