Summary Interleukin 1a (IL-ia), Interleukin 6 (IL-6) and epidermal growth factor (EGF) were tested for their ability to regulate epithelial cervical cell cytokine production and secretion and to induce proliferation of human normal and neoplastic epithelial cervical cells. IL-1 a, and IL-6 enhanced tumour and normal cell growth by 20-120%. The interleukins efficacy was similar to that of EGF for some cell lines but not for normal esocervical cells. The stimulatory effects of the interleukins were observed in both human papilloma virus (HPV)-infected and HPVnon-infected cervical cells. Normal cells constitutively expressed IL-i a, IL-6 and EGF mRNA. All cell lines except C33A expressed IL-i a mRNA. CaSki, C-411 and HT-3 expressed mRNA for IL-6. IL-1 a induced or increased IL-6 mRNA levels in the Me-180 and HT-3 lines and in normal cervical cells. IL-6 induced: (1) the expression of its own mRNA only in Me-180 cells that constitutively lacked IL-6 mRNA; (2) the expression of IL-1 a mRNA in C-33A and increased IL-1 a mRNA level in the case of Mei 80 cells. Increased amounts of IL-6 mRNA were found in normal cells when treated with IL-1 a. In spite of the pattern of mRNA expression, only HT-3 and normal cervical cells constitutively secreted IL-6, and only normal cells were able to produce IL-1 a protein. A significant IL-1 a-dependent increase of IL-6 secretion was found in Me-180, HT-3 and normal cells. IL-ia-and IL-6-driven cell proliferations were almost completely inhibited by the addition of neutralizing anti-IL-6 antibodies. Taken together, these data suggest that interleukins play a role in cervical carcinogenesis as autocrine and/or paracrine stimuli.
Quercetin is the most consumed flavonoid present in fruits and vegetables. There has been increased interest in the possible health benefits of quercetin and other flavonoids. Because it is reported that these compounds have some antithyroid properties, we were interested whether, and by what mechanism, quercetin might regulate thyroid cell growth and function. In this report we show that quercetin inhibits thyroid cell growth in association with inhibition of insulin-modulated phosphatidylinositol 3-kinase-Akt kinase activity. Furthermore, quercetin decreases TSH-modulated RNA levels of the thyroid-restricted gene sodium/iodide symporter (NIS). We associated down-regulation of NIS RNA levels with inhibition of iodide uptake at comparable quercetin concentrations and could show that the inhibitory effect of quercetin on NIS RNA levels and iodide uptake is reproduced by inhibitors of the phospholipase-A 2 /lipoxygenase pathway. The specific inhibitor of protein kinase A, H89, only partially inhibited TSH-increased NIS expression and did not reproduce the quercetin effect. The quercetin studies thus reveal that the phospholipase-A 2 /lipoxygenase pathway appears to play an important role in TSH regulation of NIS gene expression, whereas quercetin inhibition of growth appears to involve an effect on insulin/IGF-I-Akt signaling. The data raise the possibility that quercetin may be a novel disruptor of thyroid function, which has potential effects on, or use in, the therapy of thyroid diseases. (Endocrinology 149: 84 -92, 2008)
Hyperthermia produces regression of human cancer. Because hyperthermia has produced only limited results, attention has focused on searching for substances able to sensitize tumour cells to the effects of hyperthermia. The flavonoid quercetin has been reported to be a hyperthermic sensitizer in ovarian and uterine cervical tumours and in leukaemia. Quercetin and tamoxifen inhibit melanoma cell growth. We therefore investigated whether quercetin and tamoxifen can sensitize M10, M14 and MNT1 human melanoma cells to hyperthermia. We observed that both quercetin and tamoxifen synergize with hyperthermia (42.5 degrees C) in reducing the clonogenic activity of M14 and MNT1 and in inducing apoptotic cell death in all three cell lines. As revealed by flow cytometric and Northern blot analyses, quercetin and tamoxifen reduced heat shock protein-70 expression at both protein and mRNA levels. Our results suggest that quercetin and tamoxifen can be usefully combined with hyperthermia in the therapy of recurrent and/or metastatic melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.