We develop a multiple particle tracking technique for making precise, localized measurements of the mechanical microenvironments of inhomogeneous materials. Using video microscopy, we simultaneously measure the Brownian dynamics of roughly one hundred fluorescent tracer particles embedded in a complex medium and interpret their motions in terms of local viscoelastic response. To help overcome the inherent statistical limitations due to the finite imaging volume and limited imaging times, we develop statistical techniques and analyze the distribution of particle displacements in order to make meaningful comparisons of individual particles and thus characterize the diversity and properties of the microenvironments. The ability to perform many local measurements simultaneously allows more precise measurements even in systems that evolve in time. We show several examples of inhomogeneous materials to demonstrate the flexibility of the technique and learn new details of the mechanics of the microenvironments that small particles explore. This technique extends other microrheological methods to allow simultaneous measurements of large numbers of probe particles, enabling heterogeneous samples to be studied more effectively.PACS number͑s͒: 83.85. Ei, 83.10.Pp, 82.35.Pq, 62.25.ϩg
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.