Abstract:Relationship between polymerised triacylglycerols formation and tocopherols degradation was studied during heating of four commercially accessible vegetable oils (rapeseed oil, classical sunflower oil, soybean oil and olive oil) on the heating plate with temperature 180°C. The content of polymerised triacylglycerols 6% (i.e. half of maximum acceptable content) was achieved after 5.3, 4.2, 4.1, and 2.6 hours of heating for olive oil, soybean oil, rapeseed oil and sunflower oil, respectively, while decrease in content of total tocopherols to 50% of the original content was achieved after 3.4, 1.6, 1.3, and 0.5 hours of heating for soybean oil, rapeseed oil, sunflower oil and olive oil, respectively. Because of the high degradation rate of tocopherols, decrease in content of total tocopherols to 50% of the original content was achieved at content of polymerised triacylglycerols 0.6%, 1.9%, 2.8% and 4.9% for olive oil, rapeseed oil, sunflower oil and soybean oil, respectively, i.e. markedly previous to the frying oil should be replaced.
Réblová Z., Fišnar J., Tichovská D., Doležal M., Joudalová K. (2012): Effect of temperature and oil composition on the ability of phenolic acids to protect naturally present α-tocopherol during the heating of plant oils. Czech J. Food Sci., 30: 351-357.The ability of phenolic acids (ferulic, gallic, protocatechuic, and sinapic; 600 mg/kg) to protect naturally present a-tocopherol was tested during the heating of sunflower oil on a hot plate set at 120, 150, 180, 210, or 240°C, and during the heating of rapeseed, olive and soybean oils on a hot plate set at 180°C. In all the studied conditions, a-tocopherol was significantly protected only by gallic acid. This phenolic acid prolonged the half-life of a-tocopherol (calculated as the time needed for the a-tocopherol content to decrease to 50% of the original value) typically two-to four-fold. Hence the ability of phenolic acids to protect a-tocopherol in bulk oils does not markedly depend on the experimental conditions as is seen in antioxidant activity, i.e. in the ability of antioxidants to protect fatty acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.