Over 200 million malaria cases globally lead to half a million deaths annually. Accurate malaria diagnosis remains a challenge. Automated imaging processing approaches to analyze Thick Blood Films (TBF) could provide scalable solutions, for urban healthcare providers in the holoendemic malaria sub‐Saharan region. Although several approaches have been attempted to identify malaria parasites in TBF, none have achieved negative and positive predictive performance suitable for clinical use in the west sub‐Saharan region. While malaria parasite object detection remains an intermediary step in achieving automatic patient diagnosis, training state‐of‐the‐art deep‐learning object detectors requires the human‐expert labor‐intensive process of labeling a large dataset of digitized TBF. To overcome these challenges and to achieve a clinically usable system, we show a novel approach. It leverages routine clinical‐microscopy labels from our quality‐controlled malaria clinics, to train a Deep Malaria Convolutional Neural Network classifier (DeepMCNN) for automated malaria diagnosis. Our system also provides total Malaria Parasite (MP) and White Blood Cell (WBC) counts allowing parasitemia estimation in MP/μL, as recommended by the WHO. Prospective validation of the DeepMCNN achieves sensitivity/specificity of 0.92/0.90 against expert‐level malaria diagnosis. Our approach PPV/NPV performance is of 0.92/0.90, which is clinically usable in our holoendemic settings in the densely populated metropolis of Ibadan. It is located within the most populous African country (Nigeria) and with one of the largest burdens of Plasmodium falciparum malaria. Our openly available method is of importance for strategies aimed to scale malaria diagnosis in urban regions where daily assessment of thousands of specimens is required.
Internet and Communication Technology/electrical and electronic equipment (ICT/EEE) form the bedrock of today’s knowledge economy. This increasingly interconnected web of products, processes, services, and infrastructure is often invisible to the user, as are the resource costs behind them. This ecosystem of machine-to-machine and cyber-physical-system technologies has a myriad of (in)direct impacts on the lithosphere, biosphere, atmosphere, and hydrosphere. As key determinants of tomorrow’s digital world, academic institutions are critical sites for exploring ways to mitigate and/or eliminate negative impacts. This Report is a self-deliberation provoked by the question How do we create more resilient and healthier computer science departments: living laboratories for teaching and learning about resource-constrained computing, computation, and communication? Our response for University College London (UCL) Computer Science is to reflect on how, when, and where resources—energy, (raw) materials including water, space, and time—are consumed by the building (place), its occupants (people), and their activities (pedagogy). This perspective and attendant first-of-its-kind assessment outlines a roadmap and proposes high-level principles to aid our efforts, describing challenges and difficulties hindering quantification of the Department’s resource footprint. Qualitatively, we find a need to rematerialise the ICT/EEE ecosystem: to reveal the full costs of the seemingly intangible information society by interrogating the entire life history of paraphernalia from smartphones through servers to underground/undersea cables; another approach is demonstrating the corporeality of commonplace phrases and Nature-inspired terms such as artificial intelligence, social media, Big Data, smart cities/farming, the Internet, the Cloud, and the Web. We sketch routes to realising three interlinked aims: cap annual power consumption and greenhouse gas emissions, become a zero waste institution, and rejuvenate and (re)integrate the natural and built environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.