Telomere length has been associated with risk of many cancers, but results are inconsistent. Seven single nucleotide polymorphisms (SNPs) previously associated with mean leukocyte telomere length were either genotyped or well-imputed in 11108 case patients and 13933 control patients from Europe, Israel, the United States and Australia, four of the seven SNPs reached a P value under .05 (two-sided). A genetic score that predicts telomere length, derived from these seven SNPs, is strongly associated (P = 8.92x10-9, two-sided) with melanoma risk. This demonstrates that the previously observed association between longer telomere length and increased melanoma risk is not attributable to confounding via shared environmental effects (such as ultraviolet exposure) or reverse causality. We provide the first proof that multiple germline genetic determinants of telomere length influence cancer risk.
The total number of acquired melanocytic nevi on the skin is strongly correlated with melanoma risk. Here we report a meta-analysis of 11 nevus GWAS from Australia, Netherlands, United Kingdom, and United States, comprising a total of 52,506 phenotyped individuals. We confirm known loci including MTAP, PLA2G6, and IRF4, and detect novel SNPs at a genome-wide level of significance in KITLG, DOCK8, and a broad region of 9q32. In a bivariate analysis combining the nevus results with those from a recent melanoma GWAS meta-analysis (12,874 cases, 23,203 controls), SNPs near GPRC5A, CYP1B1, PPARGC1B, HDAC4, FAM208B and SYNE2 reached global significance, and other loci, including MIR146A and OBFC1, reached a suggestive level of significance. Overall, we conclude that most nevus genes affect melanoma risk (KITLG an exception), while many melanoma risk loci do not alter nevus count. For example, variants in TERC and OBFC1 affect both traits, but other telomere length maintenance genes seem to affect melanoma risk only. Our findings implicate multiple pathways in nevogenesis via genes we can show to be expressed under control of the MITF melanocytic cell lineage regulator.
Tobacco smoking is the most important and well-established bladder cancer risk factor and a rich source of chemical carcinogens and reactive oxygen species that can induce damage to DNA in urothelial cells. Therefore, common variation in DNA repair genes might modify bladder cancer risk. In this study, we present results from meta-analyses and pooled analyses conducted as part of the International Consortium of Bladder Cancer. We included data on 10 single nucleotide polymorphisms corresponding to seven DNA repair genes from 13 studies. Pooled analyses and meta-analyses included 5,282 cases and 5,954 controls of non-Latino white origin. We found evidence for weak but consistent associations with ERCC2 D312N [rs1799793; per-allele odds ratio (OR), 1.10; 95% confidence interval (95% CI), 1.01-1.19; P = 0.021], NBN E185Q (rs1805794; per-allele OR, 1.09; 95% CI, 1.01-1.18; P = 0.028), and XPC A499V (rs2228000; per-allele OR, 1.10; 95% CI, 1.00-1.21; P = 0.044). The association with NBN E185Q was limited to ever smokers (interaction P = 0.002) and was strongest for the highest levels of smoking dose and smoking duration. Overall, our study provides the strongest evidence to date for a role of common variants in DNA repair genes in bladder carcinogenesis. [Cancer Res 2009;69(17):6857-64]
BackgroundCarrying the cyclin-dependent kinase inhibitor 2A (CDKN2A) germline mutations is associated with a high risk for melanoma. Penetrance of CDKN2A mutations is modified by pigmentation characteristics, nevus phenotypes, and some variants of the melanocortin-1 receptor gene (MC1R), which is known to have a role in the pigmentation process. However, investigation of the associations of both MC1R variants and host phenotypes with melanoma risk has been limited.MethodsWe included 815 CDKN2A mutation carriers (473 affected, and 342 unaffected, with melanoma) from 186 families from 15 centers in Europe, North America, and Australia who participated in the Melanoma Genetics Consortium. In this family-based study, we assessed the associations of the four most frequent MC1R variants (V60L, V92M, R151C, and R160W) and the number of variants (1, ≥2 variants), alone or jointly with the host phenotypes (hair color, propensity to sunburn, and number of nevi), with melanoma risk in CDKN2A mutation carriers. These associations were estimated and tested using generalized estimating equations. All statistical tests were two-sided.ResultsCarrying any one of the four most frequent MC1R variants (V60L, V92M, R151C, R160W) in CDKN2A mutation carriers was associated with a statistically significantly increased risk for melanoma across all continents (1.24 × 10−6 ≤ P ≤ .0007). A consistent pattern of increase in melanoma risk was also associated with increase in number of MC1R variants. The risk of melanoma associated with at least two MC1R variants was 2.6-fold higher than the risk associated with only one variant (odds ratio = 5.83 [95% confidence interval = 3.60 to 9.46] vs 2.25 [95% confidence interval = 1.44 to 3.52]; Ptrend = 1.86 × 10−8). The joint analysis of MC1R variants and host phenotypes showed statistically significant associations of melanoma risk, together with MC1R variants (.0001 ≤ P ≤ .04), hair color (.006 ≤ P ≤ .06), and number of nevi (6.9 × 10−6 ≤ P ≤ .02).ConclusionResults show that MC1R variants, hair color, and number of nevi were jointly associated with melanoma risk in CDKN2A mutation carriers. This joint association may have important consequences for risk assessments in familial settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.