Phytostabilization is a green, cost-effective technique for mine rehabilitation and ecological restoration. In this study, the phytostabilization capacity of Erica australis L. and Nerium oleander L. was assessed in the climatic and geochemical context of the Riotinto mining district, southwestern Spain, where both plant species colonize harsh substrates of mine wastes and contaminated river banks. In addition to tolerating extreme acidic conditions (up to pH 3.36 for E. australis), both species were found to grow on substrates very poor in bioavailable nutrients (e.g., N and P) and highly enriched with potentially phytotoxic elements (e.g., Cu, Cd, Pb, S). The selective root absorption of essential elements and the sequestration of potentially toxic elements in the root cortex are the main adaptations that allow the studied species to cope in very limiting edaphic environments. Being capable of a tight elemental homeostatic control and tolerating extreme acidic conditions, E. australis is the best candidate for use in phytostabilization programs, ideally to promote early stages of colonization, improve physical and chemical conditions of substrates and favor the establishing of less tolerant species, such as N. oleander.
Copper uptake, accumulation in different tissues and organs and biochemical and physiological parameters were studied in Erica australis treated with different Cu concentrations (1, 50, 100 and 200 µM) under hydroponic culture. Copper treatments led to a significant reduction in growth rate, biomass production and water content in shoots, while photosynthetic pigments did not change. Copper treatments led to an increase in catalase and peroxidase activities. Copper accumulation followed the pattern roots > stems ≥ leaves, being roots the prevalent Cu sink. Analysis by scanning electron microscopy coupled with elemental X-ray analysis (SEM–EDX) showed a uniform Cu distribution in root tissues. On the contrary, in leaf tissues, Cu showed preferential storage in abaxial trichomes, suggesting a mechanism of compartmentation to restrict accumulation in mesophyll cells. The results show that the studied species act as a Cu-excluder, and Cu toxicity was avoided to a certain extent by root immobilization, leaf tissue compartmentation and induction of antioxidant enzymes to prevent cell damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.