This paper examined the effects that different tissue conductivities had on forward-calculated ECGs. To this end, we ranked the influence of tissues by performing repetitive forward calculations while varying the respective tissue conductivity. The torso model included all major anatomical structures like blood, lungs, fat, anisotropic skeletal muscle, intestine, liver, kidneys, bone, cartilage, and spleen. Cardiac electrical sources were derived from realistic atrial and ventricular simulations. The conductivity rankings were based on one of two methods: First, we considered fixed percental conductivity changes to probe the sensitivity of the ECG regarding conductivity alterations. Second, we set conductivities to the reported minimum and maximum values to evaluate the effects of the existing conductivity uncertainties. The amplitudes of both atrial and ventricular ECGs were most sensitive for blood, skeletal muscle conductivity and anisotropy as well as for heart, fat, and lungs. If signal morphology was considered, fat was more important whereas skeletal muscle was less important. When comparing atria and ventricles, the lungs had a larger effect on the atria yet the heart conductivity had a stronger impact on the ventricles. The effects of conductivity uncertainties were significant. Future studies dealing with electrocardiographic simulations should consider these effects.
Multiscale cardiac modeling has made great advances over the last decade. Highly detailed atrial models were created and used for the investigation of initiation and perpetuation of atrial fibrillation. The next challenge is the use of personalized atrial models in clinical practice. In this study, a framework of simple and robust tools is presented, which enables the generation and validation of patient-specific anatomical and electrophysiological atrial models. Introduction of rule-based atrial fiber orientation produced a realistic excitation sequence and a better correlation to the measured electrocardiograms. Personalization of the global conduction velocity lead to a precise match of the measured P-wave duration. The use of a virtual cohort of nine patient and volunteer models averaged out possible model-specific errors. Intra-atrial excitation conduction was personalized manually from left atrial local activation time maps. Inclusion of LE-MRI data into the simulations revealed possible gaps in ablation lesions. A fast marching level set approach to compute atrial depolarization was extended to incorporate anisotropy and conduction velocity heterogeneities and reproduced the monodomain solution. The presented chain of tools is an important step towards the use of atrial models for the patient-specific AF diagnosis and ablation therapy planing.
Despite the commonly accepted notion that action potential duration (APD) is distributed heterogeneously throughout the ventricles and that the associated dispersion of repolarization is mainly responsible for the shape of the T-wave, its concordance and exact morphology are still not completely understood. This paper evaluated the T-waves for different previously measured heterogeneous ion channel distributions. To this end, cardiac activation and repolarization was simulated on a high resolution and anisotropic biventricular model of a volunteer. From the same volunteer, multichannel ECG data were obtained. Resulting transmembrane voltage distributions for the previously measured heterogeneous ion channel expressions were used to calculate the ECG and the simulated T-wave was compared to the measured ECG for quantitative evaluation. Both exclusively transmural (TM) and exclusively apico-basal (AB) setups produced concordant T-waves, whereas interventricular (IV) heterogeneities led to notched T-wave morphologies. The best match with the measured T-wave was achieved for a purely AB setup with shorter apical APD and a mix of AB and TM heterogeneity with M-cells in midmyocardial position and shorter apical APD. Finally, we probed two configurations in which the APD was negatively correlated with the activation time. In one case, this meant that the repolarization directly followed the sequence of activation. Still, the associated T-waves were concordant albeit of low amplitude.
Atrial fibrillation (AF) is the most common cardiac arrhythmia, and the total number of AF patients is constantly increasing. The mechanisms leading to and sustaining AF are not completely understood yet. Heterogeneities in atrial electrophysiology seem to play an important role in this context. Although some heterogeneities have been used in in-silico human atrial modeling studies, they have not been thoroughly investigated. In this study, the original electrophysiological (EP) models of Courtemanche et al., Nygren et al. and Maleckar et al. were adjusted to reproduce action potentials in 13 atrial regions. The parameter sets were validated against experimental action potential duration data and ECG data from patients with AV block. The use of the heterogeneous EP model led to a more synchronized repolarization sequence in a variety of 3D atrial anatomical models. Combination of the heterogeneous EP model with a model of persistent AF-remodeled electrophysiology led to a drastic change in cell electrophysiology. Simulated Ta-waves were significantly shorter under the remodeling. The heterogeneities in cell electrophysiology explain the previously observed Ta-wave effects. The results mark an important step toward the reliable simulation of the atrial repolarization sequence, give a deeper understanding of the mechanism of atrial repolarization and enable further clinical investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.