The whole complex of air protection activities has been planned in the RF with its aim to reduce levels of ambient air pollution. It is being implemented actively now and as a result the quality of the environment should improve for more than 7 million people. In this study, an algorithm has been suggested for assessing effectiveness of air protection activities. It includes six subsequent stages. The algorithm was tested at heat and power enterprises located in a region participating in the Clean Air Federal project. As a result, it was established that these enterprises were sources of potential public health risks; 70 % of them belonged to high risk categories. Until air protection activities are implemented, heat and power enterprises pollute ambient air in some areas in the city (up to 29.9 single maximum MPC; up to 6.9 average daily MPC; up to 19.0 average annual MPC), create unacceptable health risks (up to 25.8 HI for acute exposure, 22.7 HI for chronic exposure, CRT is up to 3.28∙10-4), and cause more than 87 thousand additional disease cases. Implementation of air protection activities at heat and power enterprises will reduce local levels of ambient air pollution but we still expect hygienic standards to be violated for 10 chemicals up to 3–22 MPC and high health risks are likely to persist (up to 6.5–25.5 HI for acute exposure, 11.9–22.4 HI for chronic exposure, CRT will be up to 3.28∙10-4). Effectiveness of the air protection activities planned at heat and power enterprises corresponds to the target levels of the gross pollutant emissions (reduction by 20.56 % by 2024) set within the Clean Air Federal project but it is estimated as ‘unacceptable’ as per the health harm indicator, which is additional disease cases associated with activities of these enterprises (< 20 %). It is necessary to implement additional air protection activities with respect to 12 pollutants (nitrogen dioxide, particulate matter, carbon (soot), carbon oxide, sulfur dioxide, dihydrosulfide, inorganic dust containing silicon dioxide in %: 70–20, dimethyl benzene, ethyl benzene, benzene, formaldehyde, and kerosene); to use the best available technologies with respect to the most hazardous chemicals; to monitor public health in areas with elevated health risks; to implement complex medical and preventive activities.
The study was conducted due to the necessity to streamline management of ambient air quality in large industrial cities in the country. The relevant tasks were set within the ‘Clean Air’ Federal project and the system for setting emission quotas. The aim was to develop scientific-methodical approaches that would support Rospotrebnadzor in performing its functions and duties as regards management of ambient air quality, including those accomplished within the ‘Clean Air’ Federal project. We took into account that initial data for the whole system for setting emission quotas were represented by aggregated calculation of pollutant dispersion. The study relied on input and output data provided by the ‘Ekolog-Gorod’ software package for calculating ambient air pollution. This software employs methods for calculating emission diffusion in ambient air that are applied as standards in Russia. Calculations were accomplished at points located within residential areas in the analyzed cities and covered not less than 20 major contributions made by emission sources to levels of each chemical at each calculation point. Airborne health risks were assessed in accordance with the valid methodical documents. We applied the following criteria for permissible (acceptable) risks: carcinogenic ones should not exceed 1.0•10-4; non-carcinogenic chronic and / or acute risks should be at a level of a hazard index for chemicals with the same effects equal to 3.0. The brunch and bound method of linear programming was applied to substantiate optimal regulatory impacts aimed at minimizing health risks by reducing emissions into ambient air. We developed a fundamental algorithm for identifying a list of priority pollutants and a list of objects for setting emission quotas, as well as for substantiating optimal regulatory impacts to mitigate airborne public health risks. We suggest ranking chemicals as priority pollutants in case their registered levels are higher than the established hygienic standards and they in total account for not less 95 % of contributions to unacceptable health risks for critical organs and systems at least at one calculation point. Priority objects are those that are responsible for not less than 95 % of unacceptable health risks and violations of the established hygienic standards. The study describes a developed and tested instrument for selecting optimal regulatory impacts as per relevant hygienic indicators, including levels of public health risks. The suggested approaches support the Sanitary Service in its effort to provide proper quality of ambient air. They make it possible to identify priority chemicals and objects for setting emission quotas on the unified methodical basis for any city on the country, including those listed within the ‘Clear Air’ Federal project as priority ones. They also allow estimating whether environmental protection activities are relevant to the essence and levels of public health risks.
The study was conducted due to the necessity to streamline management of ambient air quality in large industrial cities in the country. The relevant tasks were set within the ‘Clean Air’ Federal project and the system for setting emission quotas. The aim was to develop scientific-methodical approaches that would support Rospotrebnadzor in performing its functions and duties as regards management of ambient air quality, including those accomplished within the ‘Clean Air’ Federal project. We took into account that initial data for the whole system for setting emission quotas were represented by aggregated calculation of pollutant dispersion. The study relied on input and output data provided by the ‘Ekolog-Gorod’ software package for calculating ambient air pollution. This software employs methods for calculating emission diffusion in ambient air that are applied as standards in Russia. Calculations were accomplished at points located within residential areas in the analyzed cities and covered not less than 20 major contributions made by emission sources to levels of each chemical at each calculation point. Airborne health risks were assessed in accordance with the valid methodical documents. We applied the following criteria for permissible (acceptable) risks: carcinogenic ones should not exceed 1.0•10-4; non-carcinogenic chronic and / or acute risks should be at a level of a hazard index for chemicals with the same effects equal to 3.0. The brunch and bound method of linear programming was applied to substantiate optimal regulatory impacts aimed at minimizing health risks by reducing emissions into ambient air. We developed a fundamental algorithm for identifying a list of priority pollutants and a list of objects for setting emission quotas, as well as for substantiating optimal regulatory impacts to mitigate airborne public health risks. We suggest ranking chemicals as priority pollutants in case their registered levels are higher than the established hygienic standards and they in total account for not less 95 % of contributions to unacceptable health risks for critical organs and systems at least at one calculation point. Priority objects are those that are responsible for not less than 95 % of unacceptable health risks and violations of the established hygienic standards. The study describes a developed and tested instrument for selecting optimal regulatory impacts as per relevant hygienic indicators, including levels of public health risks. The suggested approaches support the Sanitary Service in its effort to provide proper quality of ambient air. They make it possible to identify priority chemicals and objects for setting emission quotas on the unified methodical basis for any city on the country, including those listed within the ‘Clear Air’ Federal project as priority ones. They also allow estimating whether environmental protection activities are relevant to the essence and levels of public health risks.
The whole complex of air protection activities has been planned in the RF with its aim to reduce levels of ambient air pollution. It is being implemented actively now and as a result the quality of the environment should improve for more than 7 million people. In this study, an algorithm has been suggested for assessing effectiveness of air protection activities. It includes six subsequent stages. The algorithm was tested at heat and power enterprises located in a region participating in the Clean Air Federal project. As a result, it was established that these enterprises were sources of potential public health risks; 70 % of them belonged to high risk categories. Until air protection activities are implemented, heat and power enterprises pollute ambient air in some areas in the city (up to 29.9 single maximum MPC; up to 6.9 average daily MPC; up to 19.0 average annual MPC), create unacceptable health risks (up to 25.8 HI for acute exposure, 22.7 HI for chronic exposure, CRT is up to 3.28∙10-4), and cause more than 87 thousand additional disease cases. Implementation of air protection activities at heat and power enterprises will reduce local levels of ambient air pollution but we still expect hygienic standards to be violated for 10 chemicals up to 3–22 MPC and high health risks are likely to persist (up to 6.5–25.5 HI for acute exposure, 11.9–22.4 HI for chronic exposure, CRT will be up to 3.28∙10-4). Effectiveness of the air protection activities planned at heat and power enterprises corresponds to the target levels of the gross pollutant emissions (reduction by 20.56 % by 2024) set within the Clean Air Federal project but it is estimated as ‘unacceptable’ as per the health harm indicator, which is additional disease cases associated with activities of these enterprises (< 20 %). It is necessary to implement additional air protection activities with respect to 12 pollutants (nitrogen dioxide, particulate matter, carbon (soot), carbon oxide, sulfur dioxide, dihydrosulfide, inorganic dust containing silicon dioxide in %: 70–20, dimethyl benzene, ethyl benzene, benzene, formaldehyde, and kerosene); to use the best available technologies with respect to the most hazardous chemicals; to monitor public health in areas with elevated health risks; to implement complex medical and preventive activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.