Main properties of the processes of iron ore destruction in terms of its simultaneous effect by mechanical load and electric field of ultra-high frequency have been studied. That was compared with the case when only mechanical load is applied. Theoretically, it has been proved that in the first case, quartz crystals accumulate more energy, and this effect is manifested mostly in terms of resonance. For the first time, the iron ore samples of cubic geometry were tested using a non-uniform volumetric compression unit. Application of the ultrahigh frequency field resulted in ultimate strength reduction by 1.5 – 2.0 times and significant increase in plasticity of the destruction. At the same time, density of the sample destruction energy in a volume unit is significantly lower than that in the case of mechanical load (1.05 and 2.6 MJ/m3, respectively). There is also a tendency of reducing large fraction yield and increasing fine fraction yield along with the increase up to 11% in iron content in the products after grinding. The results of theoretical and numerous experimental studies have been substantiated the necessity to continue the research and development work on adapting the proposed jaw crusher to the production conditions.
The paper proposes a method to determine of a coal seam roof falling step basing upon the analysis of stress and strain state of the rock mass area with mine workings formed as a result of coal preparatory and extraction operations. A boundary element method has been applied to define stress and strain state (SSS). Fissuring of enclosing rocks was modeled by means of transversal-isotropic medium. Dependence of destructed rocks zone height within the roof of a seam being mined upon the weakening of the rock mass due to its fissuring and mine working geometry has been determined. Effect of fissility on the periodical roof falling step has been studied. Changes in support loads in the process of stope advance have been determined. A scheme of partial backfilling of the worked out area has been proposed to maintain the support in its working order.
Purpose. To develop techniques for estimating the pit wall stability in terms of occurring of a zone of heavily jointed rock mass during ore mining at the Akzhal deposit (Kazakhstan), to work out measures to strengthen the rock opening and to verify the effectiveness of the developed measures. Methodology. The finite element analysis of the rock stress-strain state is implemented on the basis of the elastic-plastic model and the generalized Hoek-Brown failure criterion. The rock mass quality was assessed using the RMR and GSI rating classifications. This made it possible to simulate a zone of intense fracturing by changing the characteristics of the jointed surface. The shear strength reduction procedure was used to determine the safety factor for the quarry wall. Findings. The strain distributions in the rock mass forming the quarry wall have been obtained in terms of the Akzhal polymetallic ore deposit (Kazakhstan). The case of creating a zone of heavily jointed rocks in the area of a tectonic fault was considered. The safety factor of the quarry wall was determined under conditions of increased rock fracturing, as well as after carrying out measures to strengthen the rocks with a hardening solution. Originality. The effect of intense jointness on the pit wall stability is demonstrated. A method for the consistent evaluation of the quarry wall stability is proposed considering the change in the rock properties due to natural factors and artificial reinforcement. It is shown that a change in the joint surface quality due to the hardening injection reduces the shear strains in the sliding zone. Practical value. The pit wall stability was predicted considering the formation of a zone of intense fracturing under mining and geological conditions of the Akzhal deposit. The possibility of testing the effectiveness of rock strengthening measures based on mathematical modeling was shown.
We considered the problem of weight optimization of parameters of multi-layer composite shell produced by the method of continuous cross-winding under axisymmetric loading. Shell layers are placed symmetrically relative to the middle surface. The angles of the reinforcing material winding variable along the meridian and the thickness of layers are taken as the variation parameters. We propose an algorithm of the automated determination of the elastic constants of a composite material variable along the shell meridian anisotropy. The connection of the composite structure with the technological process of shell manufacturing by winding with a reinforcing tape under different angles to the axis of rotation is taken into account. The values of four elastic constants obtained as a result of experimental testing of witness specimens of the composite material along and orthogonal to the reinforcement are used as output. The equations of state of the moment theory of shells of the variable along the meridian orthotropy and wall thickness are obtained as a boundary value problem for a system of ordinary differential equations with variable coefficients. The use of the necessary optimality conditions in the form of the principle maximum of Pontryagin in the presence of arbitrary phrasal restraints made it possible to reduce the emerging multiparameter problem to a sequence of extreme problems of a significantly smaller dimension. This approach greatly simplifies taking into account the conditions of strength reliability, and technological and structural requirements of real design, and the process of finding an optimal project as a whole. The results of the optimization of a two-layer fiberglass shell of rotation are presented in the form of a change in the distribution of layers’ thickness and the glass fiber winding angle. Materials of research can be used to reduce the material consumption of structural elements in rocket and space technology and other branches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.