Drug safety is an important science to detect threats related to medication consumption. Drug monitoring is often referred to as drug defence. For example, medicine's side effects can be caused by interactions, excessive doses and violence. In addition, information must be collected and mapped to predefined terms to find models in which the unintended effects are induced. This mapping is today manually conducted by experts, which can be very time consuming and challenging. In this paper the aim is to automate the mapping phase of side effects using techniques for machine learning.The model was created using data of pre-existing mappings of literal side effect expressions. The last design used the pre-trained BERT language model and the latest findings were obtained inside the NLP. The final model was correct at 80.21 percent in the evaluation of the test range. Some wordings were found to be very difficult to define for our model, mainly because of uncertainty or lack of literal knowledge. Since a threshold was introduced that left the most difficult to identify wordings for manual mapping, which is very important to make mapping correctly. However, this method could still be improved because suggested terms were created from the model, which could be used as support for the manual mapping specialist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.