We present quantum molecular dynamics calculations of thermophysical properties of solid and liquid zirconium in the vicinity of melting. An overview of available experimental data is also presented. We focus on the analysis of thermal expansion, molar enthalpy, resistivity and normal spectral emissivity of solid and liquid Zr. Possible reasons of discrepancies between the firstprinciple simulations and experiments are discussed. Our calculations reveal a significant volume change on melting in agreement with electrostatic levitation experiments. Meanwhile, we confirm a low value of enthalpy of fusion obtained in some pulse-heating experiments. Electrical resistivity of solid and liquid Zr is systematically underestimated in our simulations, however the slope of resistivity temperature dependencies agrees with experiment. Our calculations predict almost constant normal spectral emissivity in liquid Zr.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.