It is necessary not only to develop information and communication infrastructures and algorithms for distributed and cloud processing of data coming from all kinds of sensors and sensors, but also to design new materials that enable the production of safe, effective and accessible to the general public test systems when creating digital health saving systems as part of the development of modern electronic medical monitoring technologies. An analysis of the market for consumables intended for use in rapid diagnostic devices shows that disposable test strips on a flexible polymer base with high biological resistance to the effects of blood components are most in demand. It has been shown that surface modification of polyethylene by fluorination, sulfonation and plasmification methods provides a significant reduction in platelet adhesion to processed polymer films. It was also suggested that the surface energy of the modified material has a determining effect on its hemocompatibility.This work is devoted to the formation of an analytical model of the surface morphology of fluorinated polyethylene, as well as a quantitative analysis of the structural and functional relationships between the parameters of the morphological model and the resistance of the material to platelet adhesion. The widespread use of the discussed approach to increasing the thromboresistance of polymeric materials will increase the reliability of glycemic analyzes performed by patients on their own using portable express diagnostic systems (glucometers).
The need to ensure the possibility of widespread use of electronic and mobile health-saving technologies requires not only the formation of an appropriate information technology infrastructure and the development of effective algorithms for processing a large amount of personal information. Development of medical devices for recording physiological processes also involves the creation of innovative biologically compatible materials that allow sensors and medical sensors to work continuously in 24/7 mode. Taking into account the long-term positive experience of using large-capacity thermoplastics and elastomers in medical equipment, it seems promising to use the corresponding polymers as the main materials of wearable electronics for medical purposes. At the same time, to ensure the biological compatibility of the materials under discussion, it is necessary to minimize the possibility of the development of pathogenic microorganisms on surfaces in contact with living tissues. This type of pathogenic organisms (pathogens of a number of dangerous diseases – mycoses) includes some types of microscopic fungi - micromycetes (in particular, Aspergillus niger van Tiegem; Aspergillus terreus Thom; Penicillium cycopium Westling). The article examines the effect of surface modification by gas-phase fluorination on the nature and degree of development of a mixed colony of micromycetes on the surfaces of experimental samples made of several types of thermoplastics (polyvinyl chloride, polypropylene, low-density polyethylene, polyethylene terephthalate) and elastomers (butyl- and butadiene-nitrile rubbers, as well as ethylene, propylene and dicyclopentadiene copolymers). The nature and degree of development of colonies are quantitatively described using the original methodology developed earlier. The effect of fluorination on the nanotexture and chemical composition of the surface and near-surface layers of experimental samples was demonstrated using scanning electron microscopy (SEM) and IR Fourier spectroscopy (IRFS). The dynamics and efficiency of fluorination are described using a linearized hyperbolic model, the parameters of which are set by the least squares method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.