Goal. To assess the effect of topical treatment of atopic dermatitis patients with the 0.1% tacrolimus ointment on the itching intensity and skin expression level of growth factor proteins affecting the intensity of cutaneous innervation. Materials and methods. Fifteen patients suffering from atopic dermatitis underwent treatment with the 0.1% tacrolimus ointment. The SCORAD index was calculated to assess the severity of clinical manifestations. The itching intensity was assessed using a visual analogue scale. The skin expression of nerve growth factors, amphiregulin, semaphorin 3A and PGP9.5 protein (a nerve fiber marker) was assessed by the indirect immunofluorescence method. Results. An increased expression of the nerve growth factor and reduced semaphorin 3A expression levels were noted in the patients’ epidermis; there was an increase in the quantity, mean length and fluorescence intensity of PGP9.5+ nerve fibers. As a result of the treatment, the disease severity and itching intensity were reduced, the nerve growth factor expression level was reduced while semaphorin 3A expression level increased in the epidermis, and the mean length and fluorescence intensity of PGP9.5+ nerve fibers was also reduced. A positive correlation among the itching intensity and nerve growth factor expression level, quantity and mean length of PGP9.5+ nerve fibers in the epidermis was revealed, and negative correlation between the itching intensity and semaphorin 3A expression level in the epidermis was established. Conclusion. Topical treatment with the 0.1% Tacrolimus ointment reduces the itching intensity in atopic dermatitis patients, which is related to the therapy-mediated reduction in the epidermis innervation level, decreased expression of epidermal nerve growth factor and increased semaphorin 3A expression level.
Atopic dermatitis is a chronic recurrent inflammatory disease caused, inter alia, by violations of the barrier function of the skin and pathological immune response in the form of an imbalance of Th1 and Th2 lymphocytes with increased production of IL-4, IL-5, IL-13, IL-31. Treatment of severe forms of atopic dermatitis is not an easy task due to the variability of the individual response to treatment, the short duration of the therapeutic effect and the frequent development of undesirable phenomena associated with the use of existing methods of systemic immunosuppressive therapy. The study of the pathogenesis of atopic dermatitis made it possible to identify the spectrum of molecular targets, providing the basis for researching alternative variants to the previously used systemic therapy methods – genetic engineering biological preparations. Contemporary data on the pathogenesis of atopic dermatitis as well as potential molecular targets for innovative biological preparations, the efficacy of which has been evaluated through clinical trials, are presented in the review.
The article discusses key aspects of the pathogenesis of atopic dermatitis and issues of the selection of pathogenetically substantiated therapy methods. The authors provide data on the efficient use of basic drugs used to treat dermatosis in children - topical glucocorticosteroids and calcineurin inhibitors. The authors also describe a current algorithm for using topical calcineurin inhibitors during the period of an exacerbation of atopic dermatitis and to prevent relapses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.