Fibril formation of islet amyloid polypeptide (IAPP) is associated with cell death of the insulin-producing pancreatic bcells in patients with Type 2 Diabetes Mellitus. A likely cause for the cytotoxicity of human IAPP is that it destroys the barrier properties of the cell membrane. Here, we show by fluorescence confocal microscopy on lipid vesicles that the process of hIAPP amyloid formation is accompanied by a loss of barrier function, whereby lipids are extracted from the membrane and taken up in the forming amyloid deposits. No membrane interaction was observed when preformed fibrils were used. It is proposed that lipid uptake from the cell membrane is responsible for amyloid-induced membrane damage and that this represents a general mechanism underlying the cytotoxicity of amyloid forming proteins.
The precursor of plasma carboxypeptidase B (pCPB) also known as thrombin-activable fibrinolysis inhibitor can be converted by thrombin to an active enzyme capable of eliminating C-terminal Lys-and Arg-residues from proteins. The activation is about 1000-fold more efficient in the presence of thrombomodulin (TM). We investigated the antifibrinolytic potency of maximally activated pCPB in plasma and explored the antifibrinolytic mechanism of pCPB. During clotting of plasma in the presence of 3.3 NIH units/ml thrombin and 1 g/ml soluble TM, more than 80% pro-pCPB was converted into the active form causing an increase of plasma carboxypeptidase activity from 100 units/liter (constitutive activity ascribed to plasma carboxypeptidase N) to 430 units/liter as measured with furoylacroleyl-alanyl-arginine substrate. Under these conditions, lysis of a plasma clot induced by a range of tissue-type plasminogen activator (t-PA) concentrations (0.2-2 g/ml) was retarded more than 4-fold. A considerable retardation of fibrinolysis was observed upon addition of as little as 12 ng/ml soluble TM, a concentration comparable with physiological concentrations of soluble TM in human plasma. The presence of Ca 2؉ appeared to be a critical requirement for effective activation of pro-pCPB by thrombin-TM in plasma. Plasminogen-binding sites (C-terminal lysines) on the surface of a plasmin-treated fibrin clot were eliminated within 1-3 min by plasma with maximally activated pCPB, as studied in a recently described model involving fluorescence microscopy. Confocal fluorescence microscopy showed that in the absence of TM plasminogen strongly accumulated on fibrin fibers during t-PA-induced lysis of a plasma clot. In the presence of TM (and a concomitant pro-pCPB activation), lysis was slow and was not accompanied by accumulation of plasminogen on the fibers. In conclusion, generation of active pCPB during clotting of plasma in the presence of Ca 2؉ and TM leads to a retardation of plasma clot lysis in a wide range of t-PA concentrations, from low to therapeutic, and to a fast elimination of plasminogenbinding sites on partially degraded fibrin. This is a likely mechanism for the antifibrinolytic effect of active pCPB.
Binding of components of the fibrinolytic system to fibrin is important for the regulation of fibrinolysis. In this study, decomposition of the fibrin network and binding of plasminogen and plasminogen activators (PAs) to fibrin during lysis of a plasma clot were investigated with confocal microscopy using fluorescein-labeled preparations of fibrinogen, plasminogen, tissue-type PA (t-PA), and two-chain urokinase-type PA (tcu-PA). Lysis induced by PAs present throughout the plasma clot was accompanied by a gradual loss of fibrin content of fibers and by accumulation of plasminogen onto the fibers. Two sequential phases could be distinguished: a phase of prelysis, during which the fibrin network remained immobile, and a phase of final lysis, during which fibers moved with a tendency to shrink and eventually disappeared. The two phases occurred simultaneously but in different locations when lysis was induced by PAs present in the plasma surrounding the clot. The zone of final lysis was located within a 5-8 microns superficial layer, where fibers were mobile, a surface-associated fibrin agglomerates appeared. Plasminogen accumulated in these agglomerates up to 30-fold as compared with its concentration in the outer plasma. t-PA was also highly concentrated in the agglomerates, and tcu-PA bound to them slightly. The zone of prelysis, where plasminogen was moderately accumulated on the immobile fibers, was located deeper in the clot. This zone was much thinner in the case of t-PA-induced lysis than in the case of tcu-PA-induced lysis, reflecting the difference in penetration of the two PAs into the clot. We conclude that under conditions of diffusional transport of fibrinolytic enzymes from outside a plasma clot, extensive lysis is spatially restricted to a zone not exceeding 5-8 microns from the clot surface. In this zone the structure of the fibrin network undergoes significant changes, and strikingly high accumulation of fibrinolytic components takes place.
We conclude that the generation of potent surface-associated plasminogen-binding sites during thrombolysis results in a strikingly high plasminogen concentration at the dynamically changing surface of a lysing clot. The necessity of a continuous plasminogen supply from the plasma supports the use of fibrin-specific and plasminogen-sparing agents for thrombolytic therapy.
In HeLa cells, complete inhibition of oxidative phosphorylation by oligomycin, myxothiazol or FCCP combined with partial inhibition of glycolysis by DOG resulted in a steady threefold decrease in the intracellular ATP level. The ATP level recovers when the DOG-containing medium was replaced by that with high glucose. In 48 h after a transient (3 h) [ATP] lowering followed by recovery of the ATP level, the majority of the cells commits suicide by means of apoptosis. The cell death does not occur if DOG or an oxidative phosphorylation inhibitor was added separately, treatments resulting in 10-35% lowering of [ATP]. Apoptosis is accompanied by Bax translocation to mitochondria, cytochrome c release into cytosol, caspase activation, reactive oxygen species (ROS) generation, and reorganization and decomposition of chromatin. Apoptosis appears to be sensitive to oncoprotein Bcl-2 and a pancaspase inhibitor zVADfmk. In the latter case, necrosis is shown to develop instead of apoptosis. The cell suicide is resistant to cyclosporine A, a phospholipase inhibitor trifluoroperazine, the JNK and p38 kinase inhibitors, oligomycin, N-acetyl cysteine and mitoQ, differing in these respects from the tumor necrosis factor (TNF)- and H(2)O(2)-induced apoptoses. It is suggested that the ATP concentration in the cell is monitored by intracellular "ATP-meter(s)" generating a cell suicide signal when ATP decreases, even temporarily, below some critical level (around 1 mM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.