The results of sensing of the gas and aerosol composition of the atmosphere with the Optik Tu‐134 aircraft laboratory in the period from 31 July to 1 August 2012 are presented. The measurements were conducted along the flight route Novosibirsk‐Tomsk‐Mirny‐Yakutsk‐Bratsk‐Novosibirsk. A significant part of the Siberian territory during this period was covered by numerous forest fires. The synoptic situation during the measurements was characterized by the presence of low‐gradient field. This fact determined the low rate of transport and diffusion of pollutants and their accumulation in the region under study. The maximal concentrations of CO2, CH4, and CO over fire zones achieved 432 ppm, 2367 ppb, and 4036 ppb, respectively. The aerosol particle number density in emission plumes achieved 4400 cm−3. Outside emission plumes, the concentration ranged within 400–1000 cm−3 depending on the region. The mass concentration of aerosol in plumes increased approximately 7 times (6.9). The enrichment of the concentration of some elements and ions in the plume with respect to the background varied from 1.3 to 9.1 times. The generation of ozone from biomass burning products was observed at plume boundaries. Two versions of this process are possible: ozone generation under and above the plume.
Abstract. The primary objective of this complex aerosol experiment was the measurement of microphysical, chemical, and optical properties of aerosol particles in the surface air layer and free atmosphere. The measurement data were used to retrieve the whole set of aerosol optical parameters, necessary for radiation calculations. Three measurement cycles were performed within the experiment during 2013: in spring, when the aerosol generation is maximal; in summer (July), when atmospheric boundary layer altitude and, hence, mixing layer altitude are maximal; and in late summer/early autumn, during the period of nucleation of secondary particles. Thus, independently obtained data on the optical, meteorological, and microphysical parameters of the atmosphere allow intercalibration and inter-complement of the data and thereby provide for qualitatively new information which explains the physical nature of the processes that form the vertical structure of the aerosol field.
Background: Biological components of atmospheric aerosol affect the quality of atmospheric air. Long-term trends in changes of the concentrations of total protein (a universal marker of the biogenic component of atmospheric aerosol) and culturable microorganisms in the air are studied. Methods: Atmospheric air samples are taken at two locations in the south of Western Siberia and during airborne sounding of the atmosphere. Sample analysis is carried out in the laboratory using standard culture methods (culturable microorganisms) and the fluorescence method (total protein). Results: Negative trends in the average annual concentration of total protein and culturable microorganisms in the air are revealed over more than 20 years of observations. For the concentration of total protein and culturable microorganisms in the air, intra-annual dynamics is revealed. The ratio of the maximum and minimum values of these concentrations reaches an order of magnitude. The variability of concentrations does not exceed, as a rule, two times for total protein and three times for culturable microorganisms. At the same time, for the data obtained in the course of airborne sounding of the atmosphere, a high temporal stability of the vertical profiles of the studied concentrations was found. The detected biodiversity of culturable microorganisms in atmospheric air samples demonstrates a very high variability at all observation sites. Conclusions: The revealed long-term changes in the biological components of atmospheric aerosol result in a decrease in their contribution to the atmospheric air quality index.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.