Multi-year monitoring of atmospheric bioaerosol in Southwestern Siberia revealed the presence of a large number of various culturable microorganisms. It is known that viable microorganisms can cause directly or provoke different human diseases. It's very difficult to evaluate the danger represented by each microorganism to man directly. Therefore, a relatively simple method is required for evaluation of potential danger represented to man by the whole assembly of culturable microorganisms in an atmospheric aerosol sample. For bacteria, the method can be based on a number of individual characteristics of each microorganism determined in the course of biochemical and other test required for identification of the detected bacterium, and a number of other tests. It is proposed to classify the measured individual characteristics of bacteria under four groups of indices responsible for: (i) potential pathogenicity for man; (ii) the numbers of bacteria in the sample; (iii) resistance to unfavorable environmental factors; (iv) drug resistance of bacteria. Each of four groups of indices is numerically evaluated by a certain integral index, which quantitatively reflects the contribution of experimentally determined characteristics of bacteria. Expert evaluation of the contribution of each characteristic of microorganisms to the corresponding group of indices is performed. The generalized index of potential danger of culturable bacteria in atmospheric aerosols for human health is presented as the product of four integral indices summarizing the normalized individual integral indices for all bacteria detected in the sample. The work presents the results of measuring the variations of all the above indices for atmospheric air samples collected during one year.
Background: Biological components of atmospheric aerosol affect the quality of atmospheric air. Long-term trends in changes of the concentrations of total protein (a universal marker of the biogenic component of atmospheric aerosol) and culturable microorganisms in the air are studied. Methods: Atmospheric air samples are taken at two locations in the south of Western Siberia and during airborne sounding of the atmosphere. Sample analysis is carried out in the laboratory using standard culture methods (culturable microorganisms) and the fluorescence method (total protein). Results: Negative trends in the average annual concentration of total protein and culturable microorganisms in the air are revealed over more than 20 years of observations. For the concentration of total protein and culturable microorganisms in the air, intra-annual dynamics is revealed. The ratio of the maximum and minimum values of these concentrations reaches an order of magnitude. The variability of concentrations does not exceed, as a rule, two times for total protein and three times for culturable microorganisms. At the same time, for the data obtained in the course of airborne sounding of the atmosphere, a high temporal stability of the vertical profiles of the studied concentrations was found. The detected biodiversity of culturable microorganisms in atmospheric air samples demonstrates a very high variability at all observation sites. Conclusions: The revealed long-term changes in the biological components of atmospheric aerosol result in a decrease in their contribution to the atmospheric air quality index.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.