A human being standing upright with his feet as the pivot is the most popular example of the stabilized inverted pendulum. Achieving stability of the inverted pendulum has become common challenge for engineers. In this paper, we consider an initial value discrete fractional Duffing equation with forcing term. We establish the existence, Hyers–Ulam stability, and Hyers–Ulam Mittag-Leffler stability of solutions for the equation. We consider the inverted pendulum modeled by Duffing equation as an example. The values are tabulated and simulated to show the consistency with theoretical findings.
Pantograph, the technological successor of trolley poles, is an overhead current collector of electric bus, electric trains, and trams. In this work, we consider the discrete fractional pantograph equation of the form Δ*β[k](t)=wt+β,k(t+β),k(λ(t+β)), with condition k(0)=p[k] for t∈N1−β, 0<β≤1, λ∈(0,1) and investigate the properties of asymptotic stability of solutions. We will prove the main results by the aid of Krasnoselskii’s and generalized Banach fixed point theorems. Examples involving algorithms and illustrated graphs are presented to demonstrate the validity of our theoretical findings.
In this paper, we study a type of nonlinear hybrid Δ-difference equations of fractional-order. The main objective is to establish some stability criteria including the Ulam–Hyers stability, generalized Ulam–Hyers stability together with the Mittag-Leffler–Ulam–Hyers stability for the addressed problem. Prior to the stabilization processes, solvability criteria for the existence and uniqueness of solutions are considered. For this purpose, a hybrid fixed point theorem for triple operators and the Banach contraction mapping principle are applied, respectively. For the sake of illustrating the practical impact of the proposed theoretical criteria, we finish the paper with particular examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.