Forages are usually inoculated with homofermentative and facultative heterofermentative lactic acid bacteria (LAB) to enhance lactic acid fermentation of forages, but effects of such inoculants on silage quality and the performance of dairy cows are unclear. Therefore, we conducted a meta-analysis to examine the effects of LAB inoculation on silage quality and preservation and the performance of dairy cows. A second objective was to examine the factors affecting the response to silage inoculation with LAB. The studies that met the selection criteria included 130 articles that examined the effects of LAB inoculation on silage quality and 31 articles that investigated dairy cow performance responses. The magnitude of the effect (effect size) was evaluated using raw mean differences (RMD) between inoculated and uninoculated treatments. Heterogeneity was explored by meta-regression and subgroup analysis using forage type, LAB species, LAB application rate, and silo scale (laboratory or farm-scale) as covariates for the silage quality response and forage type, LAB species, diet type [total mixed ration (TMR) or non-TMR], and the level of milk yield of the control cows as covariates for the performance responses. Inoculation with LAB (≥10 cfu/g as fed) markedly increased silage fermentation and dry matter recovery in temperate and tropical grasses, alfalfa, and other legumes. However, inoculation did not improve the fermentation of corn, sorghum, or sugarcane silages. Inoculation with LAB reduced clostridia and mold growth, butyric acid production, and ammonia-nitrogen in all silages, but it had no effect on aerobic stability. Silage inoculation (≥10 cfu/g as fed) increased milk yield and the response had low heterogeneity. However, inoculation had no effect on diet digestibility and feed efficiency. Inoculation with LAB improved the fermentation of grass and legume silages and the performance of dairy cows but did not affect the fermentation of corn, sorghum, and sugar cane silages or the aerobic stability of any silage. Further research is needed to elucidate how silage inoculated with homofermentative and facultative heterofermentative LAB improves the performance of dairy cows.
The first objective of this study was to examine effects of adding Escherichia coli O157:H7 with or without chemical or microbial additives on the bacterial diversity and composition of alfalfa silage. The second objective was to examine associations between the relative abundance of known and unknown bacterial species and indices of silage fermentation quality. Alfalfa forage was harvested at 54% dry matter, chopped to a theoretical length of cut of 19 mm, and ensiled in quadruplicate in laboratory silos for 100 d after the following treatments were applied: (1) distilled water (control); (2) 1 × 10 cfu/g of E. coli O157:H7 (EC); (3) EC and 1 × 10 cfu/g of Lactobacillus plantarum (EC+LP); (4) EC and 1 × 10 cfu/g of Lactobacillus buchneri (EC+LB); and (5) EC and 0.22% propionic acid (EC+PA). After 100 d of ensiling, the silage samples were analyzed for bacterial diversity and composition via the Illumina MiSeq platform (Illumina Inc., San Diego, CA) and chemically characterized. Overall, Firmicutes (74.1 ± 4.86%) was the most predominant phylum followed by Proteobacteria (20.4 ± 3.80%). Relative to the control, adding E. coli O157:H7 alone at ensiling did not affect bacterial diversity or composition but adding EC+LP or EC+LB reduced the Shannon index, a measure of diversity (3.21 vs. 2.63 or 2.80, respectively). The relative abundance of Firmicutes (69.2 and 68.8%) was reduced, whereas that of Proteobacteria (24.0 and 24.9%) was increased by EC+LP and EC+PA treatments, relative to those of the control (79.5 and 16.5%) and EC+LB (77.4 and 18.5%) silages, respectively. Compared with the control, treatment with EC+LP increased the relative abundance of Lactobacillus, Sphingomonas, Pantoea, Pseudomonas, and Erwinia by 426, 157, 200, 194, and 163%, respectively, but reduced those of Pediococcus, Weissella, and Methylobacterium by 5,436, 763, and 250%, respectively. Relative abundance of Weissella (9.19%) and Methylobacterium (0.94%) were also reduced in the EC+LB silage compared with the control (29.7 and 1.50%, respectively). Application of propionic acid did not affect the relative abundance of Lactobacillus, Weissella, or Pediococcus. Lactate concentration correlated positively (r = 0.56) with relative abundance of Lactobacillus and negatively (r = -0.41) with relative abundance of Pediococcus. Negative correlations were detected between ammonia-N concentration and relative abundance of Sphingomonas (r = -0.51), Pantoea (r = -0.46), Pseudomonas (r = -0.45), and Stenotrophomonas (r = -0.38). Silage pH was negatively correlated with relative abundance of Lactobacillus (r = -0.59), Sphingomonas (r = -0.66), Pantoea (r = -0.69), Pseudomonas (r = -0.69), and Stenotrophomonas (r = -0.50). Future studies should aim to speciate, culture, and determine the functions of the unknown bacteria detected in this study to elucidate their roles in silage fermentation.
Ensiled forage, particularly corn silage, is an important component of dairy cow diets worldwide. Forages can be contaminated with several mycotoxins in the field pre-harvest, during storage, or after ensiling during feed-out. Exposure to dietary mycotoxins adversely affects the performance and health of livestock and can compromise human health. Several studies and surveys indicate that ruminants are often exposed to mycotoxins such as aflatoxins, trichothecenes, ochratoxin A, fumonisins, zearalenone, and many other fungal secondary metabolites, via the silage they ingest. Problems associated with mycotoxins in silage can be minimized by preventing fungal growth before and after ensiling. Proper silage management is essential to reduce mycotoxin contamination of dairy cow feeds, and certain mold-inhibiting chemical additives or microbial inoculants can also reduce the contamination levels. Several sequestering agents also can be added to diets to reduce mycotoxin levels, but their efficacy varies with the type and level of mycotoxin contamination. This article gives an overview of the types, prevalence, and levels of mycotoxin contamination in ensiled forages in different countries, and describes their adverse effects on health of ruminants, and effective prevention and mitigation strategies for dairy cow diets. Future research priorities discussed include research efforts to develop silage additives or rumen microbial innocula that degrade mycotoxins.
The study objective was to evaluate the effects of sustained reduction of enteric methane (CH) emissions with dietary supplementation of the inhibitor 3-nitrooxypropanol (NOP) on growth rate and feed conversion efficiency of growing and finishing beef cattle. Eighty-four crossbred steers were used in a 238-d feeding study and fed a backgrounding diet for the first 105 d (backgrounding phase) and transition diets for 28 d followed by a finishing diet for 105 d (finishing phase) with 3 doses of NOP (0, 100, and 200 mg/kg DM). The experiment was a completely randomized design using 21 pens (4 cattle/pen) with 7 pens per treatment. When cattle were fed the backgrounding diet, pen DMI was reduced ( < 0.01) whereas G:F tended to improve ( = 0.06) with increasing dose of NOP supplementation. During the finishing phase, DMI ( = 0.06) and ADG ( = 0.07) tended to decrease with increasing dose of NOP supplementation. Although both levels of NOP were effective in reducing CH emissions from the backgrounding diet ( < 0.01), only NOP supplemented at the highest dose was effective in reducing total CH emissions from the finishing diet ( < 0.01). Methane yield (g/kg DMI) was reduced whereas hydrogen emissions were increased at the highest dose of NOP supplementation with both backgrounding and finishing diets ( < 0.01). Overall, these results demonstrate efficacy of NOP in reducing enteric CH emissions from cattle fed backgrounding and finishing diets, and these effects were negated once NOP supplementation was discontinued.
The study objective was to evaluate the combined effects of supplementing monensin (MON) and the methane (CH4) inhibitor 3-nitrooxypropanol (NOP) on enteric CH4 emissions, growth rate, and feed conversion efficiency of backgrounding and finishing beef cattle. Two hundred and forty crossbred steers were used in a 238-d feeding study and fed a backgrounding diet for the first 105 d (backgrounding phase), transition diets for 28 d, followed by a finishing diet for 105 d (finishing phase). Treatments were as follows: 1) control (no additive); 2) MON (monensin supplemented at 33 mg/kg DM; 3) NOP (3-nitrooxypropanol supplemented at 200 mg/kg DM for backgrounding or 125 mg/kg DM for finishing phase); and 4) MONOP (33 mg/kg DM MON supplemented with either 200 mg/kg DM or 125 mg/kg DM NOP). The experiment was a randomized complete block (weight: heavy and light) design with 2 (NOP) × 2 (MON) factorial arrangement of treatments using 24 pens (8 cattle/pen; 6 pens/treatment) at the main feedlot and 8 pens (6 cattle/pen; 2 pens/treatment) at the controlled environment building (CEB) feedlot. Five animals per treatment were moved to chambers for CH4 measurements during both phases. Data were analyzed using a Mixed procedure of SAS with pen as experimental unit (except CH4). Location (Main vs. CEB) had no significant effect and was thus omitted from the final model. Overall, there were few interactions between MON and NOP indicating that the effects of the 2 compounds were independent. When cattle were fed the backgrounding diet, pen DMI was decreased by 7%, whereas gain-to-feed ratio (G:F) was improved by 5% with NOP supplementation (P < 0.01). Similarly, MON improved G:F ratio by 4% (P < 0.01), but without affecting DMI. During the finishing phase, DMI tended (P = 0.06) to decrease by 5% with both MON (5%) and NOP (5%), whereas ADG tended (P = 0.08) to decrease by 3% with MON. Gain-to-feed ratio for finishing cattle was improved with NOP by 3% (P < 0.01); however, no effects were observed with MON. 3-Nitrooxypropanol decreased CH4 yield (g/kg DMI) by 42% and 37% with backgrounding and finishing diets (P ≤ 0.01), respectively, whereas MON did not lower CH4 yield. Overall, these results demonstrate efficacy of NOP in reducing enteric CH4 emissions and subsequently improving feed conversion efficiency in cattle fed high-forage and high-grain diets. Furthermore, effects of NOP did not depend on whether MON was included in the diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.