The atomic arrangement of the technologically important As-rich GaAs͑001͒-͑2 3 4͒ reconstructed surface is determined using bias-dependent scanning tunneling microscopy (STM) and first-principles electronic structure calculations. The STM images reveal the relative position and depth of the atomicscale features within the trenches between the top-layer As dimers, which are in agreement with the b2͑2 3 4͒ structural model. The bias-dependent simulated STM images reveal that a retraction of the topmost dangling bond orbitals is the novel electronic mechanism that enables the STM tip to image the trench structure.
We report a large spin-polarized current injection from a ferromagnetic metal into a nonferromagnetic semiconductor, at a temperature of 100 Kelvin. The modification of the spin-injection process by a nanoscale step edge was observed. On flat gallium arsenide [GaAs(110)] terraces, the injection efficiency was 92%, whereas in a 10-nanometer-wide region around a [111]-oriented step the injection efficiency is reduced by a factor of 6. Alternatively, the spin-relaxation lifetime was reduced by a factor of 12. This reduction is associated with the metallic nature of the step edge. This study advances the realization of using both the charge and spin of the electron in future semiconductor devices.
A reversible 2D critical transition is observed on the GaAs(001) surface and modeled as a lattice-gas Ising system. Without depositing any material, 2D GaAs islands spontaneously form. The order parameter, four critical exponents, and coupling energies are measured from scanning tunneling microscope images of the microscopic domain structure and correlation functions as a function of temperature and pressure. Unprecedented insight into the domain structure of a 2D Ising system through the critical point and a complete Hamiltonian for modeling the GaAs(001) surface are presented.
The reconstructions of the Ga polarity GaN(0 0 0 1) surface with and without trace amounts of arsenic and prepared by molecular beam epitaxy (MBE) have been studied with in situ reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM). Various reconstructions are observed with RHEED by analyzing patterns while the substrate is exposed to a fixed NH3 flux or after depositing known amounts of Ga as a function of substrate temperature. In situ STM images reveal that only a few of these reconstructions yield long-range periodicity in real space. The controversial role of arsenic on Ga induced reconstructions was also investigated using two independent MBE chambers and X-ray photoelectron spectroscopy.
Preroughening and roughening transitions are observed on the GaAs(001) surface using scanning tunneling microscopy. By tuning the substrate temperature or As4 pressure the surface morphology can be made free of islands, covered with one monolayer high islands or covered with islands on top of islands forming a wedding-cake-type structure. These three distinct surface morphologies are classified as ordered flat (OF), disordered flat (DOF), and rough within the restricted solid-on-solid model. Here, the DOF phase is macroscopically flat; however, an up-down-up-down step pattern persists across the entire surface. Using this model we have determined the next-nearest-neighbor interaction energy to be about 0.05 eV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.