The hexagonal ferrites form an unusual group of complex, ferrimagnetic oxides embodying some 60 known crystal structures. These include phases for which the structural unit cell is larger than that in any known inorganic materials. The various hexagonal ferrite modifications fall into two distinct structural series, each formed by the ordered interlayering (stacking) of two discrete building blocks; these blocks stack along the c crystallographic axis in varying ratios and varying permutations to form strictly coherent, reproducible crystal structures. This mixed-layering aspect of the hexagonal ferrites permits direct, visual observation of the sequence of their subunit-cell stacking elements, after etching, by means of electron microscopy. The sequence of stacked blocks in such structures constitutes the only information lacking for a complete, three-dimensional structure determination. Direct access to this information provides an immediate, unique solution of the crystal structure problem in each case and thereby avoids the dilemmas of a classical diffraction approach to such large unit cells. Ferrite structures with hexagonal c dimensions of 1455 and 1577 angstroms have been uniquely solved by direct electron microscopic readout of surface etch features. One must exercise caution, however, in generalizing these findings to other materials. The method is successful in the case of the hexagonal ferrites because these are mixed-layer structures, wherein the building blocks react at different rates to a specific etchant. Mixed-layer systems are not uncommon in crystallography, and it is likely that similar techniques can be developed for other such materials. Regardless of the validity of this prognosis, however, it is quite evident that high-resolution replica electron microscopy is a most promising tool for the direct observation of surface structure on an ultramicro scale. During the studies reported here replica resolution capability was improved to about 10 angstroms; final resolution is limited by the particle size of the platinum shadowing material. Careful control of experimental conditions during replica preparation or an alternate choice of shadowing material, or both, might reasonably improve the resolution by a factor of 2. This resolution is within the range of most unit cell dimensions and approaches interatomic distances in solid-state materials. The potential of such an experimental capability needs no elaboration.
W was found to produce low specific contact resistance (ρc∼8.0×10−5 Ω cm2) ohmic contacts to n+-GaN (n=1.5×1019 cm−3) with limited reaction between the metal and semiconductor up to 1000 °C. The formation of the β–W2N and W–N interfacial phases were deemed responsible for the electrical integrity observed at these annealing temperatures. No Ga out-diffusion was observed on the surface of thin (500 Å) W contacts even after 1000 °C, 1 min anneals. Thus, W appears to be a stable contact to n+-GaN for high temperature applications.
The microstructure of luminescent porous silicon, formed by electrochemical etching of silicon wafers has been characterized by cross-sectional high-resolution transmission electron microscopy. Results of this study reveal the structure to consist of Si crystallites. The crystallites are ∼3.5 nm in size and are randomly distributed throughout the porous Si region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.