Cylindrical, stand-alone tubes of plasma-sprayed alumina were tested in compression in the axial direction at room temperature, using strain gauges to monitor axial and circumferential strains. The primary compression-loading profile used was cyclic loading, with monotonically increased peak stresses. Hysteresis was observed in the stress-strain response on unloading, beginning at a peak stress of 50 MPa. The modulus decreased as the maximum applied stress increased. The stress-strain response was only linear at low stresses; the degree of nonlinearity at high stresses scaled with the stress applied. One-hour dwells at constant stress at room temperature revealed a time-dependent strain response. Using transmission electron microscopy and acoustic emission to investigate deformation mechanisms, the stressstrain response was correlated with crack pop-in, growth, and arrest. It is proposed that the numerous defects in plasmasprayed coatings, including porosity and microcracks, serve as sites for crack nucleation and/or propagation. As these small, nucleated cracks extend under the applied stress, they propagate nearly parallel to the loading direction along interlamellae boundaries. With increasing stress, these cracks ultimately link, resulting in catastrophic failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.