Harvesting energy from ambient vibration is a promising method for providing a continuous source of power for wireless sensor nodes. However, traditional energy harvesters are often derived from resonant linear oscillators which are capable of providing sufficient output power only if the dominant frequency of input vibrations closely matches the device resonant frequency. The limited scope of such devices has sparked an interest in the use of nonlinear oscillators as mechanisms for broadband energy harvesting. In this study, we investigate the harvesting performance of an electromagnetic harvester sustaining oscillations through the phenomena of magnetic levitation. The nonlinear behavior of the device is effectively modeled by Duffing's equation, and direct numerical integration confirms the broadband frequency response of the nonlinear harvester. The nonlinear harvester's power generation capabilities are directly compared to a linear electromagnetic harvester with similar dynamic parameters. Experimental testing shows that the presence of both high and low amplitude solutions for the nonlinear energy harvester results in a tendency for the oscillator to remain in a low energy state for non-harmonic vibration inputs, unless continuous energy impulses are provided. We conclude by considering future applications and improvements for such nonlinear devices.
This meeting in the informal conference series organised by the Iron and Steel Society of the Institute of Materials, Metals and Mining, held in London on 6-7 November 2006, attracted 64 delegates from 13 countries.These included representatives from 14 steel producers, three machine builders, six suppliers of equipment and services, four steel company research centres and one university. In total 26 papers were presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.