This paper presents the results achieved by fault classifier ensembles based on supervised learning for diagnosing faults on oil rigs motor pumps. The main goal is to apply two feature-based ensemble construction methods to a real-world problem. Recent studies have shown that the use of ensembles of classifiers that are accurate and at the same time have diversifying results can improve the final classification accuracy, compared to a single accurate classifier. The diversification performed by the methods presented in this work is obtained by varying the feature set each classifier uses. We show results obtained with the established genetic algorithm GEFS and a recently developed approach called BSFS, which has lower computational cost. We rely on a database of real data, with 2000 acquisitions of vibration signals extracted from operational motor pumps. Our results show that the ensemble methods had a higher classification accuracy solving a real-world fault diagnosis problem than single classifiers. Also, we present promising results in our experiments with both algorithms, that successfully solves the problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.