Nanocomposite powders from polypropylene filled with surface modified and unmodified fumed silica have been prepared from polymer solution to achieve improved mixing and have been forwarded to fiber melt spinning. The surface of the fumed silica was modified with dodecyl alkoxy silanes. Crystallization velocity and viscosity of the PP nanocomposites thereof were determined to ensure good melt spinning processing conditions for all composite compositions. Upon addition of untreated filler particles, a shear thinning and an increased crystallization velocity of the polymer melt was found, while only minor changes were detected in the presence of surface modified fumed silica particles. The composites and the polymer fibers made from these powder composites by melt spinning were mainly characterized by optical microscopy (OM), scanning electron microscopy (SEM), mechanical measurements, differential scanning calorimetry (DSC), and solid-state NMR. The unmodified fumed silica was found to have a strong influence on the mechanical fiber properties, while the surface modified silica only a small one. Fibers were additionally characterized with respect to the uniformity, the PP crystallinity, moisture absorption, and the water contact angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.