We investigated the interaction between surface conditions and precipitating convection by comparing the Amazon River against the surrounding forest. Despite similar synoptic conditions within a few tens of kilometers, the river surface is substantially cooler than the surrounding forest during the day and warmer at night. We analyzed 20 years of high‐resolution satellite precipitation data and confirmed previous findings of daytime rainfall reduction over the river for the whole Amazon Basin. The percentage reduction is strongest during the dry‐to‐wet transition season. In addition, the percentage reduction of individual tributary is significantly correlated with the Laplacian of surface temperature, which causes thermally driven surface divergence and suppresses local convection. Additionally, nighttime rainfall is enhanced over tributaries near the Atlantic coast during the wet season. A regional climate model then simulates the local rainfall anomalies associated with the river. Above the river, moisture diverges near the surface and converges above the surface before the daytime rainfall, partially driven by the horizontal gradient of humidity. Unlike the river, moisture convergence within the boundary layer is more critical for the rainfall above the forest region. Our studies suggest that strong thermal contrast can be important in deriving heterogeneous convection in moist tropical regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.