Cyclic guanosine monophosphate (cGMP), which is implicated in cardiac cell growth and function, is synthesized by cytoplasmic soluble guanylyl cyclase (GC) stimulated via nitric oxide (NO) and by particulate membrane-bound GC activated via natriuretic peptides. We investigated possible cGMP elevation in the left ventricle (LV) of rats developing physiologic LV hypertrophy during gestation. Furthermore, expression of estrogen receptors (ER) and oxytocin receptors (OTR) was evaluated because their activation stimulates NO and atrial natriuretic peptide (ANP) release from the heart. Compared with nonpregnant controls, Sprague-Dawley rats on day 7 of gestation had similar heart weights, but, on days 14 and 21, ventricular mass increased by 12% and 28% respectively (P<0·05). LV cGMP concentration was elevated at day 14 of gestation (3·25 0·12 vs 4·65 0·17 pmol/g wet weight, P<0·01) but decreased at day 21 (2·45 0·09 pmol/g, P<0·05) to increase again on postpartum day 1 (6·01 0·15 pmol/g) and day 4 (9·21 1·79 pmol/ g). Changes in endothelial nitric oxide synthase (eNOS), inducible NOS (iNOS), OTR and ER , but not ER , proteins paralleled the pregnancy-related cGMP changes in the LV. In contrast, ANP mRNA of the LV remained at control level throughout gestation but increased postpartum, whereas brain natriuretic peptide (BNP) expression declined at term and increased postpartum. The particulate GC natriuretic peptide receptors (GC-A and GC-B) transcripts were already lower at day 14 of gestation. Natriuretic peptide clearance receptor (NPR-C) transcript was not altered on days 7 and 14, but increased at term. We conclude that cGMP concentration in the rat LV is influenced by both NOS and natriuretic peptide systems and may be involved in the changes of LV contractility and hypertrophy that occur during rat gestation.
We have recently uncovered the presence of an oxytocin system in the heart and found that oxytocin is a physiological regulator of atrial natriuretic peptide (ANP), a diuretic, natriuretic and vasodilator cardiac hormone. However, dynamic changes in these systems during gestation, when mechanisms of volume and pressure homeostasis are altered, are not clear. Accordingly, ANP, oxytocin and oxytocin receptors were evaluated in rat hearts and plasma at three stages of gestation (7, 14 and 21 days) and at 2 and 5 days postpartum. Compared with non-pregnant controls, plasma ANP was elevated in midgestation, but significantly decreased at term (21 days), to increase again postpartum. Right and left atrial ANP mRNA levels were not altered throughout gestation but increased by 1·5-to 2-fold postpartum (P<0·01). At term, ANP content in right (8·7 1·2 vs 12·7 1·1 µg/mg protein, P<0·04) and left (3·5 0·6 vs 8·5 2·0 µg/mg protein, P<0·01) atria increased. These findings imply that decreased plasma ANP at term results from inhibition of release rather than decreased synthesis. In parallel, oxytocin, a stimulator of ANP release, decreased in left atria at day 7 to 50% of non-pregnant levels and remained low throughout gestation. Oxytocin receptor mRNA increased in left atria at 7 and 14 days of gestation by 2-and 5-fold respectively, but decreased at 21 days to lower than non-pregnant levels to increase again (3-fold) postpartum. The changes in oxytocin receptor expression at term and postpartum paralleled oxytocin receptor protein determined by Western blot. These results imply that pregnancy is associated with dynamic changes in the cardiac oxytocin system (peptide and/or receptors), which may influence natriuretic peptide release. Together, these peptides would act on their receptors in the heart, vasculature and kidneys to maintain vascular tone and renal function throughout gestation and postpartum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.