The migration of vascular smooth muscle cells (VSMC) is known to be a key process in the development of a number of vascular lesions, although the precise mechanisms involved have still to be elucidated. In the present study, the production of endogenous fibronectins by VSMC migrating across intact and matrix-metalloproteinase-degraded collagen type I has been explored. Cellular fibronectin seems to play a role in the enhanced migration seen when VSMC are exposed to degraded collagen and platelet-derived growth factor-BB. VSMC were found to synthesize both exon IIIA-containing fibronectin (which predominated) and exon IIIB-containing fibronectin. When these cells were exposed to substrates consisting of recombinant exon IIIA- or exon IIIB-containing fibronectin, rates of migration were not elevated above those seen with undegraded collagen. Endogenous fibronectin production may thus be necessary, but not sufficient, for VSMC migration over degraded collagenous substrates.
The migration of vascular smooth muscle cells (VSMC) is known to be a key process in the development of a number of vascular lesions, although the precise mechanisms involved have still to be elucidated. In the present study, the production of endogenous fibronectins by VSMC migrating across intact and matrix-metalloproteinase-degraded collagen type I has been explored. Cellular fibronectin seems to play a role in the enhanced migration seen when VSMC are exposed to degraded collagen and platelet-derived growth factor-BB. VSMC were found to synthesize both exon IIIA-containing fibronectin (which predominated) and exon IIIB-containing fibronectin. When these cells were exposed to substrates consisting of recombinant exon IIIA- or exon IIIB-containing fibronectin, rates of migration were not elevated above those seen with undegraded collagen. Endogenous fibronectin production may thus be necessary, but not sufficient, for VSMC migration over degraded collagenous substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.