A new reaction sequence for the chemical functionalization of single-wall carbon nanotubes (SWNTs) consisting of the nucleophilic addition of t-BuLi to the sidewalls of the tubes and the subsequent reoxidation of the intermediates t-Bu(n)SWNT(n-) leading to t-Bu(n)SWNT was developed. During the formation of the t-Bu(n)SWNT(n-), a homogeneous dispersion in benzene was formed due to the electrostatic repulsion of the negatively charged intermediates causing debundling. The entire reaction sequence can be repeated, and the degree of functionalization of the products (t-Bu(n))(m)SWNT (m = 1-3) increases with increasing m. Degrees of functionalization expressed as the carbon-to-addend ratio of up to 31 were reached. The reaction was studied in detail by photoelectron spectroscopy, Raman spectroscopy, and scanning tunneling microscopy (STM). The C 1s core level spectra reveal that the nucleophilic attack of the t-BuLi leads to negatively charged SWNTs. Upon oxidation, this negative charge is removed. The valence band spectra of the functionalized samples exhibit a significant reduction in the pi-derived density of states. In STM, the covalently bonded t-butyl groups attached to the sidewalls have been visualized. Raman spectroscopy reveals that addition of the nucleophile to metallic tubes is preferred over the addition to semiconducting tubes.
Covalent sidewall addition to single-walled nanotubes (SWNTs) of a series of organolithium and organomagnesium compounds (nBuLi, tBuLi, EtLi, nHexLi, nBuMgCl, tBuMgCl) followed by reoxidation is reported. The functionalized R(n)-SWNTs were characterized by Raman and NIR emission spectroscopy. The reaction of SWNTs with organolithium and magnesium compounds exhibits pronounced selectivity: in general, metallic tubes are more reactive than semiconducting ones. The reactivity of SWNTs toward the addition of organometallic compounds is inversely proportional to the diameter of the tubes. This was determined simultaneously and independently for both metallic and semiconducting SWNTs. The reactivity also depends on the steric demands of the addend. Binding of the bulky t-butyl addend is less favorable than addition of primary alkyl groups. Significantly, although tBuLi is less reactive than, for example, nBuLi, it is less selective toward the preferred reaction with metallic tubes. This unexpected behavior is explained by fast electron transfer to the metallic SWNTs having low-lying electronic states close to the Fermi level, a competitive initial process. The NIR emission of weakly functionalized semiconducting SWNTs, also reported for the first time, implies interesting applications of functionalized tubes as novel fluorescent reporter molecules.
We present Raman spectroscopy on carbon nanotubes, functionalized with alkyl groups to different degrees and with different addition reactions. We observe effects in particular on the intensities of the radial breathing mode (RBM). From the RBM we can assign the diameter and chiral indices of the tubes and study the influence of functionalization on different tubes, their transition energies, Raman shifts and RBM intensities. We observe a diameter dependence of the chemical reaction under certain reaction conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.