The third largest of the nested set of subgenomic mRNAs (mRNA3) from the coronavirus infectious bronchitis virus (IBV) contains three separate open reading frames (3a, 3b, and 3c) which are not present on the next smallest of the mRNAs, suggesting that this mRNA may be functionally polycistronic. However, although a protein product has been identified from the 3c open reading frame, to date the coding function of 3a and 3b has not been established. We present nucleotide sequence data suggesting that each of the three open reading frames is conserved in a variety of different IBV strains and further show, through the preparation of monospecific antisera against bacterial fusion proteins, that IBV-infected cells contain small amounts of the products of these ORFs. In vitro translation studies using synthetic mRNAs containing the 3a, 3b, and 3c open reading frames suggest strongly that all three proteins can be translated from a single molecular species, and expression studies carried out in intact cells support this conclusion. Thus mRNA3 of IBV appears to be functionally tricistronic.
Coronavirus gene expression involves proteolytic processing of the mRNA 1-encoded polyproteins by viral and cellular proteinases. Recently, we have demonstrated that an ORF 1b-encoded 100-kDa protein is proteolytically cleaved from the 1a/1b fusion polyprotein by a viral-specific proteinase of the picornavirus 3C proteinase group (3C-like proteinase). In this report, the 3C-like proteinase has been further analysed by internal deletion of a 2.3-kb fragment between the 3C-like proteinase-encoding region and ORF 1b and by substitution mutations of its catalytic centre as well as the two predicted cleavage sites flanking the 100-kDa protein. The results show that internal deletion of ORF 1a sequences from nucleotide 9911 to 12227 does not influence the catalytic activity of the proteinase in processing of the 1a/1b polyprotein to the 100-kDa protein species. Site-directed mutagenesis studies have confirmed that the predicted nucleophilic cysteine residue (Cys2922) and a histidine residue encoded by ORF 1a from nucleotide 8985 to 8987 (His2820) are essential for the catalytic activity of the proteinase, and that the QS(G) dipeptide bonds are its target cleavage sites. Substitution mutations of the third component of the putative catalytic triad, the glutamic acid 2843 (Glu2843) residue, however, do not affect the processing to the 100-kDa protein. In addition, cotransfection experiment shows that the 3C-like proteinase is capable of trans-cleavage of the 1a/1b polyprotein. These studies have confirmed the involvement of the 3C-like proteinase domain in processing of the 1a/1b polyprotein, the predicted catalytic centre of the proteinase, and its cleavage sites.
Formation of the glycoprotein gH/gL heterooligomer has important implications for understanding the pathology of human herpesvirus-6(HHV-6)-associated disease because this complex is essential for infectivity and fusogenic cell-to-cell spread. Definition of the HHV-6 gH domain involved in protein-protein interactions was addressed by targeting regions defined by conserved cysteines identified by alignment of gH amino acid sequences representative of all herpesvirus subfamilies. Studies using site-directed mutagenesis and transient cellular expression showed that the N-terminus of HHV-6 gH includes a 230-amino-acid domain required for interaction with HHV-6 gL encompassing residues conserved specifically amongst betaherpesviruses. Interestingly, the human cytomegalovirus (HCMV) homologues, UL75 (gH) or UL115 (gL), can substitute for HHV-6 glycoproteins and participate in heterologous complex formation. Furthermore, the region which governs this heterologous gL binding also maps to the N-terminal portion of HHV-6 gH. Although both proteins can functionally substitute for complex formation there are also specific differences. Surprisingly, further deletion of HHV-6 gH to 145-amino-acid-domain residues abolishes complex formation with HHV-6 gL but allows interaction with HCMV gL. This may be related to requirements in HHV-6 for homodimer formation before complex formation between gH and gL. Under nonreducing conditions HHV-6 gH and gL form multimeric complexes consistent with intra- and intermolecular dimer formation stabilised by disulphide bonds whereas for HCMV there is no evidence for dimer formation for gH and multimeric complexes have only been observed between gH and gL. In summary, both HHV-6 and HCMV glycoproteins can interact and the heterologous complex between HHV-6 gH and HCMV gL is possibly more stable. This may result in important biological consequences in vivo during cellular coinfections by facilitating spread of the viruses, with applications to altered cellular tropisms and effects on reactivation from the latently infected cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.